

IBDP: Mathematics Applications & Interpretation SL & HL

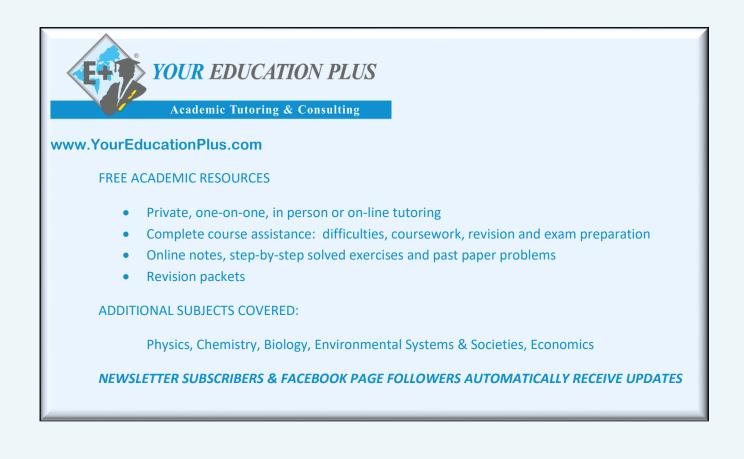
First Examinations 2021 (updated version 1.1)

Presumed Knowledge SL & HL		Presumed Knowledge HL only		
Area: Parallelogram	A = bh, b = base, h = height	Solutions of a quadratic equation in the form	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, a \neq 0$	
Area: Triangle	$A = \frac{1}{2}(bh)$, b = base, h = height	$ax^2 + bx + c = 0$	$x = 2a$, $a \neq 0$	
Area: Trapezoid	$A = \frac{1}{2}(a+b)h$, a, b = parallel sides, h = height			
Area: Circle	$A=\pi r^2$, r = radius			
Circumference: Circle	$C = 2\pi r, r = radius$	*** For Best Results *** Use units within the geometry formulas. It is more work, but it guarantees a correct answer.		
Volume: Cuboid	V = lwh , l = length, w = width, h = height			
Volume: Cylinder	$V = \pi r^2 h$, r = radius, h = height			
Volume: Prism	V = Ah , $A = cross-section$ area, $h = height$			
Area: Cylinder curve	$A=2\pi rh$, r = radius, h = height			
Distance between two points (x_1, y_1) , (x_2, y_2)	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$			
Coordinates of midpoint	$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$, for endpoints $(x_1, y_1), (x_2, y_2)$			
Topic 1: Nu	mber and Algebra – SL & HL	Topic 1: Nu	mber and Algebra – HL only	
The <i>n</i> th term of an arithmetic sequence	$u_n = u_1 + (n-1)d$	Laws of logarithms	$\log_a xy = \log_a x + \log_a y$	
Sum of <i>n</i> terms of an arithmetic sequence	$s_n = \frac{n}{2}(2u_1 + (n-1)d) = \frac{n}{2}(u_1 + u_n)$	for $a, x, y > 0$	$\log_a \frac{x}{y} = \log_a x - \log_a y$ $\log_a x^m = m \log_a x$	
The <i>n</i> th term of a geometric sequence	$u_n = u_1 r^{n-1}$	The sum of an infinite geometric sequence	$s_{\infty}=rac{u_1}{1-r}$, $ r <1$	
Sum of <i>n</i> terms of a finite geometric seq.	$s_n = \frac{u_1(r^n - 1)}{r - 1} = \frac{u_1(1 - r^n)}{1 - r}$, $r \neq 1$	Complex numbers	z = a + bi	
Compound interest	$FV = PV \times \left(1 + \frac{r}{100k}\right)^{kn}$ FV is future value, PV is present value, n is the number of years, k is the number of compounding periods per year, r% is the nominal annual rate of interest	Discriminant Modulus-argument (polar) & Exponential (Euler) form	$\Delta = b^2 - 4ac$ $z = r(\cos\theta + i\sin\theta) = re^{i\theta} = rcis\theta$	
		Determinant of a 2×2 matrix	$\boldsymbol{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow \det \boldsymbol{A} = \boldsymbol{A} = ad - bc$	
Exponents & logarithms	$a^{x} = b \iff x = \log_{a} b , a, b > 0, a \neq 1$ $ v_{A} - v_{E} = 10000$	Inverse of a 2×2 matrix	$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$	
Percentage error	$\varepsilon = \left \frac{v_A - v_E}{v_E} \right \times 100\%$ $v_A = \text{approximate value, } v_E = \text{exact value}$	Power formula for a matrix	$M^n = PD^nP^{-1}$, where P is the matrix of eigenvectors and D is the diagonal matrix of eigenvalues	
Topic 2: Functions – SL & HL		Topic 2: Functions – HL only		
Equations of a straight line	y = mx + c; ax + by + d = 0; $y - y_1 = m(x - x_1)$	Logistic function	$f(x) = \frac{L}{1 + Ce^{-kx}} , L, k, C > 0$	
Gradient formula	$m = \frac{y_2 - y_1}{x_2 - x_1}$			
Axis of symmetry of a quadratic function	$f(x) = ax^2 + bx + c \Rightarrow x = -\frac{b}{2a}$			

YourEducationPlus.com
 facebook.com/YourEducationPlus
 oureducationplus
 YourEducationPlus

IBDP: Mathematics Applications & Interpretation SL & HL

First Examinations 2021 (updated version 1.1)


Topic 3: Geome	try and Trigonometry - SL & HL	Topic 3: Geome	etry and Trigonometry - HL only
Distance between 2 points (x_1, y_1, z_1) , (x_2, y_2, z_2)	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$	Length of an arc	$l = r\theta$ r = radius, θ = angle in radians
Coordinates of midpoint of a line with endpoints (x_1, y_1, z_1) , (x_2, y_2, z_2)	$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$	Area of a sector	$A = \frac{1}{2}r^{2}\theta$ r = radius, θ = angle in radians
Volume: Right-pyramid	$V = \frac{1}{3}Ah$, $A =$ base area, $h =$ height	Identities	$\cos^{2} \theta + \sin^{2} \theta = 1$ $\tan \theta = \frac{\sin \theta}{\cos \theta}$
Volume: Right cone Area: Cone curve	$V = \frac{1}{3}\pi r^2 h$, r= radius, h = height A = $\pi r l$, r= radius, l = slant height	Transformation matrices	$\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$
Volume: Sphere	$V = \frac{4}{3}\pi r^3$, $r = radius$, reflection in the line $y = (\tan \theta)x$
Surface area: Sphere	$A = 4\pi r^2$, $r = radius$		$\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}$
Sine rule Cosine rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $c^2 = a^2 + b^2 - 2ab\cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$		• horizontal stretch by scale factor of k $\begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}$ • vertical stretch with scale factor of k $\begin{pmatrix} k & 0 \\ 0 \end{pmatrix}$ contro (0.0)
Area: Triangle	$A = \frac{1}{2}ab\sin C$		$\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$, centre (0,0) , enlargement with scale factor of k
Length of an arc	$l = \frac{\theta}{360} \times 2\pi r$ θ = angle in degrees, r = radius		$ \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}, \text{ anticlockwise rotation} \\ \text{of angle }\theta \text{ about the origin } (\theta > 0) \\ \end{cases} $
Area of a sector	$A = \frac{\theta}{360} \times \pi r^2$ θ = angle in degrees, r = radius		$ \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}, \text{ clockwise rotation} \\ \text{of angle } \theta \text{ about the origin } (\theta > 0) \\ \end{cases} $
		Magnitude of a vector	$ \boldsymbol{v} = \sqrt{v_1^2 + v_2^2 + v_3^2}$
		Vector equ. of a line	$r = a + \lambda b$
		Parametric form of the equation of a line	$x = x_0 + \lambda l$, $y = y_0 + \lambda m$, $z = z_0 + \lambda n$
		Scalar product	$\boldsymbol{v} \cdot \boldsymbol{w} = v_1 w_1 + v_2 w_2 + v_3 w_3$ $\boldsymbol{v} \cdot \boldsymbol{w} = \boldsymbol{v} \boldsymbol{w} \cos \theta$ where θ is the angle between \boldsymbol{v} and \boldsymbol{w}
		Angle between two vectors	$\cos\theta = \frac{v_1 w_1 + v_2 w_2 + v_3 w_3}{ v w }$
		Vector product	$\boldsymbol{v} \times \boldsymbol{w} = \begin{pmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{pmatrix}$ $ \boldsymbol{v} \times \boldsymbol{w} = \boldsymbol{v} \boldsymbol{w} \sin \theta$ where θ is the angle between \boldsymbol{v} and \boldsymbol{w}
		Area of a parallelogram	$A = \boldsymbol{v} \times \boldsymbol{w} $, where \boldsymbol{v} and \boldsymbol{w} form two adjacent sides of a parallelogram

IBDP: Mathematics Applications & Interpretation SL & HL

First Examinations 2021 (updated version 1.1)

Topic 4: Statistics and Probability - SL & HL		Topic 4: Statistics and Probability - HL only	
Interquartile range	$IQR = Q_3 - Q_1$	Linear transformation of a single random variable	E(aX + b) = aE(X) + b Var(aX + b) = a ² Var(X)
Mean, \overline{x} , of a set of data	$ar{x} = rac{\sum_{i=1}^k f_i x_i}{n}$, where $n = \sum_{i=1}^k f_i$	Linear combinations of n independent random variables, X_1, X_2, \dots, X_n	$E(a_1X_1 \pm a_2X_2 \pm \dots \pm a_nX_n) =$
Probability of an event A	$P(A) = \frac{n(A)}{n(u)}$		$a_1 \mathcal{E}(X_1) \pm a_2 \mathcal{E}(X_2) \pm \dots \pm a_n \mathcal{E}(X_n)$
Complementary events	n(u) $P(A) + P(A') = 1$		$\operatorname{Var}(a_1X_1 \pm a_2X_2 \pm \dots \pm a_nX_n) = a_1^2\operatorname{Var}(X_1) + a_2^2\operatorname{Var}(X_2) + \dots +$
Combined events	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$		$a_n^2 \operatorname{Var}(X_n)$
Mutually exclusive events	$P(A \cup B) = P(A) + P(B)$	Unbiased estimate of	$s_{n-1}^2 = \frac{n}{n-1} s_n^2$ Sample statistics
Conditional probability	$P(A B) = \frac{P(A \cap B)}{P(B)}$	population variance Poisson distribution	$X \sim \operatorname{Po}(m)$
Independent events	$P(A \cap B) = P(A)P(B)$	Mean ; Variance	E(X) = m ; Var(X) = m
Expected value of a discrete random variable X	$E(X) = \sum x P(X = x)$	Transition matrices	$T^n s_0 = s_n$, where s_0 is the initial state
Binomial distribution Mean ; Variance	$X \sim B(n, p)$ E(X) = np ; Var(X) = np(1 - p)		

IBDP: Mathematics Applications & Interpretation SL & HL

First Examinations 2021 (updated version 1.1)

Торіс	: 5: Calculus - SL & HL	
Derivative of x^n	$f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$	Derivative
Integral of x^n	$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C , n \neq -1$	Derivative
Area enclosed by a		Derivative
curve and the <i>x</i> -axis	$A = \int_{a}^{b} y dx , \qquad \text{where } f(x) > 0$	Derivative
The trapezoidal rule	$\int_{a}^{b} y dx \approx$	Derivative
where $h = \frac{b-a}{n}$	$\frac{1}{2}h((y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1}))$	Chain rule
		Product ru
		Quotient r
		Standard i

Торіс	5: Calculus - HL only
Derivative of sin x	$f(x) = \sin x \Rightarrow f'(x) = \cos x$
Derivative of cos x	$f(x) = \sin x \implies f'(x) = \cos x$ $f(x) = \cos x \implies f'(x) = -\sin x$
	1
Derivative of tan x	$f(x) = \tan x \implies f'(x) = \frac{1}{\cos^2 x}$
Derivative of e^x	$f(x) = e^x \implies f'(x) = e^x$
Derivative of ln x	$f(x) = \ln x \implies f'(x) = \frac{1}{x}$
Chain rule	$y = g(u), u = f(x) \Rightarrow \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
Product rule	$y = uv \Rightarrow \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$
Quotient rule	$y = \frac{u}{v} \Rightarrow \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$
Standard integrals	$\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int \frac{1}{\cos^2 x} dx = \tan x + C$ $\int e^x dx = e^x + C$
Area enclosed by a curve and <i>x</i> or <i>y</i> -axes	$A = \int_{a}^{b} y dx \text{or} A = \int_{a}^{b} x dy$
Volume of revolution about <i>x</i> or <i>y</i> -axes	$V = \int_{a}^{b} \pi y^{2} dx \text{ or } V = \int_{a}^{b} \pi x^{2} dy$
Acceleration	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2 s}{\mathrm{d}t^2} = v \frac{\mathrm{d}v}{\mathrm{d}s}$
Distance; Displacement travelled from t_1 to t_2	dist = $\int_{t_1}^{t_2} v(t) dt$; disp = $\int_{t_1}^{t_2} v(t) dt$
Euler's method	$y_{n+1} = y_n + h \times f(x_n, y_n); \ x_{n+1} = x_n + h$ where h is a constant (step length)
Euler's method for coupled systems	$\begin{aligned} x_{n+1} &= x_n + h \times f_1(x_n, y_n, t_n) \\ y_{n+1} &= y_n + h \times f_2(x_n, y_n, t_n) \\ t_{n+1} &= t_n + h \\ \text{where } h \text{ is a constant (step length)} \end{aligned}$
Exact solution for coupled linear differential equations	$\boldsymbol{x} = A e^{\lambda_1 t} \boldsymbol{p}_1 + B e^{\lambda_2 t} \boldsymbol{p}_2$

Topic 5: Calculus - HL only