

First Examinations 2021 (updated version 1.1)

Presumed Knowledge SL & HL

Area: Parallelogram	A=bh , b = base, h = height
Area: Triangle	$A = \frac{1}{2}(bh)$, $b = \text{base}$, $h = \text{height}$
Area: Trapezoid	$A=rac{1}{2}(a+b)h$, a,b = parallel sides, h = height
Area: Circle	$A=\pi r^2$, r = radius
Circumference: Circle	$C=2\pi r$, $r=$ radius
Volume: Cuboid	$V=lwh$, $\it l$ = length, $\it w$ = width, $\it h$ = height
Volume: Cylinder	$V=\pi r^2 h$, $ r$ = radius, h = height
Volume: Prism	$V=Ah$, $\it A={ m cross-section}$ area, $\it h={ m height}$
Area: Cylinder curve	$A=2\pi rh$, r = radius, h = height
Distance between two points (x_1, y_1) , (x_2, y_2)	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$
Coordinates of midpoint	$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$, for endpoints $(x_1, y_1), (x_2, y_2)$

*** For Best Results ***

Use units within the geometry formulas. It is more work, but it guarantees a correct answer.

Topic 1: Number and Algebra - SL & HL

The <i>n</i> th term of an arithmetic sequence	$u_n = u_1 + (n-1)d$
Sum of <i>n</i> terms of an arithmetic sequence	$s_n = \frac{n}{2}(2u_1 + (n-1)d) = \frac{n}{2}(u_1 + u_n)$
The <i>n</i> th term of a geometric sequence	$u_n = u_1 r^{n-1}$
Sum of \boldsymbol{n} terms of a finite geometric seq.	$s_n = \frac{u_1(r^n - 1)}{r - 1} = \frac{u_1(1 - r^n)}{1 - r}, r \neq 1$
Compound interest	$FV = PV \times \left(1 + \frac{r}{100k}\right)^{kn}$ FV is future value, PV is present value, n is the number of years, k is the number of compounding periods per year, r% is the nominal annual rate of interest
Exponents & logarithms	$a^x = b \iff x = \log_a b$, $a, b > 0, a \neq 1$
Exponents & logarithms	$\log_a xy = \log_a x + \log_a y$ $\log_a \frac{x}{y} = \log_a x - \log_a y$ $\log_a x^m = m \log_a x$ $\log_a x = \frac{\log_b x}{\log_b a}$
The sum of an infinite geometric sequence	$s_{\infty}=rac{u_1}{1-r}$, $ r <1$
Binomial Theorem for $n \in \mathbb{N}$, $(a+b)^n =$	$a^{n} + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n}$
Binomial coefficient	$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

Topic 1: Number and Algebra – HL only

Combinations; Permutations	${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$; ${}^{n}P_{r} = \frac{n!}{(n-r)!}$	
Extension of Binomial Theorem, $n\in\mathbb{Q}$	$(a+b)^n = a^n \left(1 + n\left(\frac{b}{a}\right) + \frac{n(n-1)}{2!} \left(\frac{b}{a}\right)^2 + \dots\right)$	
Complex numbers	z = a + bi	
Modulus-argument (polar) & Exponential (Euler) form	$z = r(\cos\theta + i\sin\theta) = re^{i\theta} = r\operatorname{cis}\theta$	
De Moivre's theorem	$[r(\cos\theta + i\sin\theta)]^n =$ $r^n(\cos n\theta + i\sin n\theta) = r^n e^{in\theta} = r^n \text{cis}n\theta$	

First Examinations 2021 (updated version 1.1)

Topic 2: Functions - SL & HL

Equations of a $y = mx + c \; ; \quad ax + by + d = 0 \; ;$ straight line $y - y_1 = m(x - x_1)$ **Gradient formula** Axis of symmetry of a $f(x) = ax^2 + bx + c \implies x = -\frac{b}{2a}$ quadratic function Solutions of a quadratic $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \; , a \neq 0$ equation in the form $ax^2 + bx + c = 0$ Discriminant $\Delta = b^2 - 4ac$ $a^x = e^{x \ln a}$; $\log_a a^x = x = a^{\log_a x}$ **Exponential** and where a, x > 0, $a \neq 1$ logarithmic functions

Topic 2: Functions – HL only

 $\sum_{r=0}^{n} a_r x^r = 0$ $\Rightarrow \text{Sum is } \frac{-a_{n-1}}{a_n} \text{ ; product is } \frac{(-1)^n a_0}{a_n}$ Sum & product of the roots of polynomial equations of the form

Topic 3: Geometry and Trigonometry - SL & HL

Distance between 2 points (x_1,y_1,z_1) , (x_2,y_2,z_2)	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$
Coordinates of midpoint of a line with endpoints (x_1, y_1, z_1) , (x_2, y_2, z_2)	$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$
Volume: Right-pyramid	$V=rac{1}{3}Ah$, A = base area, h = height
Volume: Right cone	$V=rac{1}{3}\pi r^2 h$, $r=$ radius, $h=$ height
Area: Cone curve	$A=\pi r l$, r = radius, l = slant height
Volume: Sphere	$V=rac{4}{3}\pi r^3$, r = radius
Surface area: Sphere	$A=4\pi r^2$, r = radius
Sine rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
Cosine rule	$c^{2} = a^{2} + b^{2} - 2ab \cos C$ $\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$
Area: Triangle	$A = \frac{1}{2}ab\sin C$
Length of an arc	$l=r\theta$, r = radius, θ = angle in radians
Area of a sector	$A=rac{1}{2}r^2 heta$, r = radius, $ heta$ = angle in radians
Identity for $ an heta$	$\tan\theta = \frac{\sin\theta}{\cos\theta}$
Pythagorean identity	$\cos^2\theta + \sin^2\theta = 1$
Double angle identities	$\sin 2\theta = 2 \sin \theta \cos \theta$ $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ $= 2 \cos^2 \theta - 1$ $= 1 - 2 \sin^2 \theta$

Topic 3: Geometry and Trigonometry – HL only

Reciprocal trigonometric identities	$\sec \theta = \frac{1}{\cos \theta}$; $\csc \theta = \frac{1}{\sin \theta}$	
Pythagorean identities	$1 + \tan^2 \theta = \sec^2 \theta \; ; \; 1 + \cot^2 \theta = \csc^2 \theta$	
Compound angle identities	$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$ $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$ $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$	
Double angle identity for tan	$\tan 2\theta = \frac{2\tan\theta}{1 - \tan^2\theta}$	
Magnitude of a vector	$ v = \sqrt{v_1^2 + v_2^2 + v_3^2}$	
Scalar product	$\mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2 + v_3 w_3$ $\mathbf{v} \cdot \mathbf{w} = \mathbf{v} \mathbf{w} \cos \theta$ where θ is the angle between \mathbf{v} and \mathbf{w}	
Angle between two vectors	$\cos \theta = \frac{v_1 w_1 + v_2 w_2 + v_3 w_3}{ v w }$	
Vector equ. of a line	$r = a + \lambda b$	
Parametric form of the equation of a line	$x = x_0 + \lambda l$, $y = y_0 + \lambda m$, $z = z_0 + \lambda n$	
Cartesian equations of a line	$\frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}$	
Vector product	$\begin{aligned} \boldsymbol{v} \times \boldsymbol{w} &= \begin{pmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{pmatrix} \\ \boldsymbol{v} \times \boldsymbol{w} &= \boldsymbol{v} \boldsymbol{w} \sin \theta \\ \text{where } \boldsymbol{\theta} \text{ is the angle between } \boldsymbol{v} \text{ and } \boldsymbol{w} \end{aligned}$	
Area of a parallelogram	$A = v \times w $, where v and w form two adjacent sides of a parallelogram	
Vector equ. of a plane	$r = a + \lambda b + \mu c$	
Equation of a plane	$oldsymbol{r}\cdotoldsymbol{n}=oldsymbol{a}\cdotoldsymbol{n}$ (using the normal vector)	
Cartesian equ. of a plane	ax + by + cz = d	

First Examinations 2021 (updated version 1.1)

Topic 4: Statistics and Probability - SL & HL		
100 0		
Interquartile range	$IQR = Q_3 - Q_1$	
Mean, \overline{x} , of a set of data	$ar{x} = rac{\sum_{i=1}^k f_i x_i}{n}$, where $n = \sum_{i=1}^k f_i$	
Probability of an event A	$P(A) = \frac{n(A)}{n(u)}$	
Complementary events	P(A) + P(A') = 1	
Combined events	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	
Mutually exclusive events	$P(A \cup B) = P(A) + P(B)$	
Conditional probability	$P(A B) = \frac{P(A \cap B)}{P(B)}$	
Independent events	$P(A \cap B) = P(A)P(B)$	
Expected value: Discrete random variable <i>X</i>	$E(X) = \sum x P(X = x)$	
Binomial distribution Mean ; Variance	$X \sim B(n, p)$ E(X) = np; $Var(X) = np(1-p)$	
Standardized normal	$x - \mu$	

Topic 41 Statis	ties and i robability file only	
Bayes' theorem	$P(B A) = \frac{P(B)P(A B)}{P(B)P(A B) + P(B')P(A B')}$ $P(B_i A) = \frac{P(B_i)P(A B_i)}{P(B_1)P(A B_1) + P(B_2)P(A B_2) + P(B_3)P(A B_3)}$	
Variance σ^2	$\sigma^2 = \frac{\sum_{i=1}^k f_i(x_i - \mu)^2}{n} = \frac{\sum_{i=1}^k f_i x_i^2}{n} - \mu^2$	
Standard Deviation σ	$\sigma = \sqrt{\frac{\sum_{i=1}^{k} f_i(x_i - \mu)^2}{n}}$	
Linear transformation of a single random variable	$E(aX + b) = aE(X) + b$ $Var(aX + b) = a^{2}Var(X)$	
Expected value: Continuous random variable <i>X</i>	$E(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx$	
Variance	$Var(X) = E[(X - \mu)^2] = E(X^2) - [E(X)]^2$	
Variance of a discrete random variable <i>X</i>	$Var(X) = \sum (x - \mu)^2 P(X = x)$ = $\sum x^2 P(X = x) - \mu^2$	
Variance of a continuous random variable <i>X</i>	$Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$ $= \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$	

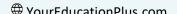
Topic 4: Statistics and Probability - HL only

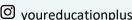
variable

YOUR EDUCATION PLUS

Academic Tutoring & Consulting

www.YourEducationPlus.com


FREE ACADEMIC RESOURCES


- Private, one-on-one, in person or on-line tutoring
- Complete course assistance: difficulties, coursework, revision and exam preparation
- Online notes, step-by-step solved exercises and past paper problems
- **Revision packets**

ADDITIONAL SUBJECTS COVERED:

Physics, Chemistry, Biology, Environmental Systems & Societies, Economics

AUTOMATIC UPDATES via NEWSLETTER

First Examinations 2021 (updated version 1.1)

Top	pic 5: Calculus - SL & HL	То	pic 5: Calculus - HL only
Derivative of x^n	$f(x) = x^n \implies f'(x) = nx^{n-1}$	Derivative of $f(x)$ from first principles	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) = \lim_{h \to 0} \left(\frac{f(x+h)}{h} \right)$
Integral of x^n Area between curve $y = f(x) & x$ -axis	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$ $A = \int_a^b y dx, \text{where } f(x) > 0$		$f(x) = \tan x \Rightarrow f'(x) = \sec x$ $f(x) = \sec x \Rightarrow f'(x) = \sec x$ $f(x) = \csc x \Rightarrow f'(x) = \cot x$
Derivative of sin x	$f(x) = \sin x \implies f'(x) = \cos x$	$f(x) = \cot x \Rightarrow f'$ $f(x) = a^x \Rightarrow f'(x)$ Standard $f(x) = \log_a x \Rightarrow f$ $f(x) = \arcsin x \Rightarrow$ $f(x) = \arccos x = 0$	$f(x) = \cot x \Rightarrow f'(x) = -c$
Derivative of cos x	$f(x) = \cos x \implies f'(x) = -\sin x$		$f(x) = a^x \Rightarrow f'(x) = a^x$ (la
Derivative of e^x	$f(x) = e^x \ \Rightarrow \ f'(x) = e^x$		$f(x) = \log_a x \Rightarrow f'(x) = \frac{1}{x}$
Derivative of $\ln x$	$f(x) = \ln x \implies f'(x) = \frac{1}{x}$		$f(x) = \arcsin x \Rightarrow f'(x) =$
Chain rule	$y = g(u), u = f(x) \Rightarrow \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$		$f(x) = \arccos x \Rightarrow f'(x) =$
Product rule	$y = uv \implies \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$		$f(x) = \arctan x \Rightarrow f'(x) =$
Quotient rule	$y = \frac{u}{v} \implies \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$	Standard $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \operatorname{arc}$ integrals	$\int a^x dx = \frac{1}{\ln a} a^x + C$
Acceleration	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2s}{\mathrm{d}t^2}$		$\int \frac{1}{\sqrt{a^2 + x^2}} dx = \arcsin\left(\frac{x}{a}\right) + \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin\left(\frac{x}{a}\right) + \frac{1}{\sqrt{a^2 - x^2}} dx$
Distance; Displacement travelled from $oldsymbol{t}_1$ to $oldsymbol{t}_2$	dist = $\int_{t_1}^{t_2} v(t) dt$; disp = $\int_{t_1}^{t_2} v(t) dt$	Integration by parts	$\int u \frac{\mathrm{d}v}{\mathrm{d}x} dx = uv - \int v \frac{\mathrm{d}u}{\mathrm{d}x} dx$
	$\int \frac{1}{x} dx = \ln x + C$	Area enclosed by a curve and <i>y</i> -axis	$A = \int_{a}^{b} x dy$
	$\int \sin x dx = -\cos x + C$	Volume of revolution about <i>x</i> or <i>y</i> -axes	$V = \int_a^b \pi y^2 dx \text{or} V = \int_a^b \pi y^2 dx$
Standard integrals	$\int \cos x dx = \sin x + C$	Euler's method	$y_{n+1} = y_n + h \times f(x_n, y_n); x_n$ where h is a constant (step length)
	$\int e^x dx = e^x + C$	Integrating factor for $y' + P(x)y = Q(x)$	$e^{\int P(x)dx}$
Area enclosed by a curve and <i>x</i> -axis	$A = \int_{a}^{b} y dx$	Maclaurin series	$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}$
The state of the s	Ja	Maclaurin series for special functions	$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots \cdot \ln(1+x)$ $\cdot \sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots \cdot \cos x$

Topic 3. Calculus - TIE offig		
Derivative of $f(x)$ from first principles	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$	
Standard derivatives	$f(x) = \tan x \Rightarrow f'(x) = \sec^2 x$ $f(x) = \sec x \Rightarrow f'(x) = \sec x \tan x$ $f(x) = \csc x \Rightarrow f'(x) = -\csc x \cot x$ $f(x) = \cot x \Rightarrow f'(x) = -\csc^2 x$ $f(x) = a^x \Rightarrow f'(x) = a^x (\ln a)$ $f(x) = \log_a x \Rightarrow f'(x) = \frac{1}{x \ln a}$ $f(x) = \arcsin x \Rightarrow f'(x) = \frac{1}{\sqrt{1 - x^2}}$	
	$f(x) = \arccos x \Rightarrow f'(x) = -\frac{1}{\sqrt{1 - x^2}}$ $f(x) = \arctan x \Rightarrow f'(x) = \frac{1}{1 + x^2}$	
Standard integrals	$\int a^{x} dx = \frac{1}{\ln a} a^{x} + C$ $\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C$ $\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \arcsin\left(\frac{x}{a}\right) + C, x < a$	
Integration by parts	$\int u \frac{\mathrm{d}v}{\mathrm{d}x} dx = uv - \int v \frac{\mathrm{d}u}{\mathrm{d}x} dx$	
Area enclosed by a curve and y-axis	$A = \int_{a}^{b} x dy$	
Volume of revolution about x or y -axes	$V = \int_a^b \pi y^2 dx \text{ or } V = \int_a^b \pi x^2 dy$	
Euler's method	$y_{n+1} = y_n + h \times f(x_n, y_n); \ x_{n+1} = x_n + h$ where h is a constant (step length)	
Integrating factor for $y' + P(x)y = Q(x)$	$e^{\int P(x)dx}$	
Maclaurin series	$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots$	
Maclaurin series for special functions	$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots \cdot \ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots$ $\cdot \sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots \cdot \cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots$	

Examples using all of the formulas are available at: www.YourEducationPlus.com