12
 Using a graphic display calculator

CHAPTER OBJECTIVES:

This chapter shows you how to use your graphic display calculator (GDC) to solve the different types of problems that you will meet in your course. You should not work through the whole of the chapter - it is simply here for reference purposes. When you are working on problems in the mathematical chapters, you can refer to this chapter for extra help with your GDC if you need it.

Instructions for the Tl-84 Plus calculator

Table of contents

1 Number and algebra 1
Simultaneous and quadratic equations
1.1 Solving simultaneous linear equations 2
1.2 Solving quadratic equations 3
Standard form and significant figures
1.3 Standard form 4
1.4 Significant figures 5
2 Descriptive statistics
Entering data
2.1 Entering lists of data 6
2.2 Entering data from a frequency table 6
Drawing charts
2.3 Drawing a frequency histogram from a list 7
2.4 Drawing a frequency histogram from a frequency table 7
2.5 Drawing a box and whisker diagram from a list 8
2.6 Drawing a box and whisker diagram from a frequency table 9
Calculating statistics
2.7 Calculating statistics from a list 10
2.8 Calculating statistics from a frequency table 10
2.9 Calculating the interquartile range 11
2.10 Using statistics 11
3 Geometry and trigonometry
Graphing
3.1 Graphing linear functions 12
Finding information about the graph
3.2 Finding a zero 12
3.3 Finding the gradient (slope) of a line 13
3.4 Solving simultaneous equations graphically 14

Use this list to help you to find the topic you need

4 Graphing quadratic and exponential functions

Quadratic functions
4.1 Drawing a quadratic graph 16
4.2 Finding a local minimum or maximum point 16
Exponential functions
4.3 Drawing an exponential graph 20
4.4 Finding a horizontal asymptote 21
More complicated functions
4.5 Solving a combined quadratic and exponential equation 22
5 Statistical applications
Calculating normal probabilities
5.1 Calculating normal probabilities from X-values 23
5.2 Calculating X-values from normal probabilities 24
Scatter diagrams, linear regressionand the correlation coefficient
5.3 Scatter diagrams 26
The χ^{2} test for independence
5.4 Using contingency tables 28
6 Differential calculus
Finding gradients, tangents and maximum and minimum points
6.1 Finding the gradient at a point 30
6.2 Drawing a tangent to a curve 31
6.3 Finding maximum and minimum points 32
7 Number and algebra 2
The finance solver
7.1 Finding the total value of an investment 33
7.2 Calculating payments for a loan 34

Before you start

You should be familiar with:

- Important keys on the keyboard: ON 2nd DEL CLEAR $y=x, T, \theta, n$ ENTER GRAPH
- The home screen
- Changing window settings in the graph screen
- Using zoom tools in the graph screen
- Using trace in the graph screen

1 Number and algebra 1

Simultaneous and quadratic equations

1.1 Solving simultaneous linear equations

When solving simultaneous equations in an examination, you do not need to show any method of solution. You should simply write out the equations in the correct form and then give the solutions. The calculator will do all the working for you.

For a reminder of how to perform the basic operations have a look at your GDC manual.

Example 1

Solve the equations:
$2 x+y=10$
$x-y=2$
Press APPS. You will see the dialog box as shown on the right. Choose the App PlySmlt2 and press ENTER.

From the main menu, choose 2: SIMULT EQN SOLVER and press ENTER.

```1: FOLY FROT FINDEF EBIHLLT EOTI SOLVER 3 : AहロuT 4: FOLY HELF 5: SIHULT HELF G: QUIT FOL'YSHLT```

The defaults are to solve two equations in two unknowns.
Note: This is how you will use the linear equation solver in your examinations. In your project, you might want to solve a more complicated system with more equations and more variables.

EquAtio	515 35678910
DEC	FFim
	SCI ERİ
FLIAT	01234567日
findititi	
( ${ }^{\text {chiniol }}$	(HELFPTIEXT)

Continued on next page

Press $\mathrm{F}_{5}$ and you will see the template on the right.

Type the coefficients from two equations into the template, pressing ENTER after each number.
Press ${ }^{\text {F5 }}$ and the calculator will solve the equations, giving the solutions as $x_{1}$ and $x_{2}$.

$2, y=2$

The solutions are $x=4, y=2$.
$\mathrm{X}_{1}$ 目4
$x=2$

MAITMUEISYSHSTAFAFDil

### 1.2 Solving quadratic equations

When solving quadratic equations in an examination, you do not need to show any method of solution. You should simply write out the equations in the correct form and then give the solutions. The calculator will do all the working for you.

## Example 2

Solve $3 x^{2}-4 x-2=0$
Press APPS. You will see the dialog box as shown on the right. Choose the App PlySmlt2 and press ENTER.

From the main menu, choose 1: POLY ROOT FINDER and press ENTER.

HiTM HE[ll
1: FOLY FODT FInDEF Z: SIHULT EDII SULVEF 3: HEDUT
4: FOL' HELF
5: SIHULT HELF 6: पUIT FDLYSHLT

The defaults are to solve an equation of order 2 (a quadratic equation) with real roots. You do not need to change anything.	
Another dialog box opens for you to enter the equation.   The general form of the quadratic equation is $a_{2} x^{2}+a_{1} x+a_{0}=0$, so we enter the coefficients in $a_{2}, a_{1}$ and $a_{0}$.	$\begin{aligned} & 92 x^{2}+\exists 1 x+\exists 0=0 \\ & \exists z= \\ & \exists 1= \\ & \exists 0= \end{aligned}$
Here $a 2=3, a 1=-4$ and $a 0=-2$. Be sure to use the $(-)$ key to enter the negative values.   Press ENTER after each value.   Press $\mathrm{FF}_{5}$ and the calculator will find the roots of the equation.	$\begin{aligned} & a z x^{2}+3 x+=a n=0 \\ & 3 z=3 \\ & \exists 1=-4 \\ & \exists 0=-2 \square \end{aligned}$  
The solutions are $x=-0.387$ or $x=1.72$ ( 3 sf ).	$\begin{aligned} & 92 \times 2+91 \times+9=0 \\ & \times 1-1.7297592 \\ & \times 2=.387488667 \end{aligned}$  

## Standard form and significant figures

### 1.3 Standard form

Numbers written in standard form are in the form $a \times 10^{n}$, where $1 \leq a<10$ and $n \in \mathbb{Z}$.
$2.4 * 10^{4}$
246010
There are three different ways of entering a number in standard form.
For example, to enter $2.4 \times 10^{4}$ press the keys
2. (4) (1) $0 \wedge 4$ or
2.4 E 4

24ETETE
2. (4) $x$ $10^{0} 4$ or
(2). (4) 4

## Example 3

Given that $x=2.4 \times 10^{4}$ and $y=3.6 \times 10^{3}$, find the value of
a $2 x+3 y$
b $x y^{2}$

Enter the values using one of the three methods previously highlighted.
In normal mode, the calculator will display the result either as a normal number or, if it is a large number, in standard form.
Write your answer in standard form. For 3.11E11, write $3.11 \times 10^{11}$.
$2 * 2.4 * 10^{4}+3 * 3.6 * *$ 58806
$2 * 2.4 * 10^{4}+3 * 3.6 * 1{ }^{*}$
58800
$2 * 2.4 \mathrm{EA}+3 * 3.6 \mathrm{ES}$ tex [ill

After you enter an   exponent, you will   need to press $\quad$ to   return to the base line   of the calculation. When you enter a   number using either   $\Lambda$ or 2nd 10x, you$\quad$should use brackets   before you square the   number.	$\begin{gathered} 2.4 * 10^{4} *\left(3.6 * 10^{3}\right. \\ 3.1104 \mathrm{E} 11 \\ \left.2.4 * 10^{4} *(3.6 * 1)^{2}\right)^{2} \\ 3.1104 \mathrm{E} 11 \\ 2.4 \mathrm{E} 4 * 3.6 \mathrm{ES} \\ \mathrm{~S} .1 \mathrm{EE} \mathrm{EIII} \end{gathered}$
To change the answer to standard form, press MODE Choose 'SCI' for the Exponential Format. Press 2nd Quit to return to the calculation page.   Note: Remember to return the settings back to normal when you have finished.	
All results are now given in standard form:   a $5.88 \times 10^{4}$   b $3.11 \times 10^{11}$	$\begin{aligned} & 2 * 2.4 \mathrm{E} 4+3 * 3.6 \mathrm{ES} \\ & 2.4 \mathrm{E} 4 * 3.6 \mathrm{ES} \\ & 3.1104 \mathrm{E} 11 \end{aligned}$

### 1.4 Significant figures

For Mathematical Studies, answers to questions should be rounded to 3 significant figures ( 3 sf ), unless told otherwise.

## Example 4

## Your GDC is not much

 help as it will only round to a set number of decimal places (dp).Do these calculations. Give each of your answers correct to 3 significant figures (3sf).

| a $4 \times \pi$ | b $3.629 \times 2.76 \quad$ c $123 \times 12$ |
| :--- | :--- | :--- |

To change the answer to 1 decimal place, press MODE.
Choose ' 1 ' for the number of decimal places.
Press 2nd QUIT to return to the calculation page.
Note: Remember to return the settings back to normal when you have finished.

All results are now given in rounded form:
a 12.6 is correct to 1 dp . This is the same as 3 sf for this example.
b 10.0 is correct to 1 dp . This is the same as 3 sf for this example.
c 1476 is 1480 to 3 sf. Since the rounding is before the decimal point, the GDC will not round this answer.


## $4 \pi$

$3.629 * 2.76$
$123 * 12$
1476. 1

## 2 Descriptive statistics

You can use your GDC to draw charts to represent data and to calculate basic statistics such as mean, median, etc. Before you do this you need to enter the data in a list.

## Entering data

There are two ways of entering data: as a list or as a frequency table.

### 2.1 Entering lists of data

## Example 5

Enter the data in the list: 1, 1, 3, 9, 2.

Press STAT 1: Edit and press ENTER.
Type the numbers in the first column (L1). Press ENTER or after each number to move down to the next cell.
L1 will be used later when you want to make a chart or to do some calculations with this data. You can use columns from L1 to L6 to enter the list.


### 2.2 Entering data from a frequency table

## Example 6



## Drawing charts

Charts can be drawn from a list or from a frequency table.

### 2.3 Drawing a frequency histogram from a list

## Example 7

Draw a frequency histogram for this data: 1, 1, 3, 9, 2.
Enter the data in L1 (see Example 5). Press 2nd STAT PLOT and ENTER to select Plot1. Select On, choose the histogram option and leave XList as L1 and Freq as 1.

Press ZOOM | 9:Stat. The automatic scales do not usually give the best display of the histogram. You will need to change the default values.

Press window and choose options as shown.
Xmin and Xmax should include the range of the data.
Ymin and Ymax should include the maximum frequency and should go below zero.
Xscl will define the width of the bars.
Press TRACE.
Use the key to move to each of the bars and display their value and frequency.

You should now see a frequency histogram for the data in the list $1,1,3,9,2$.
 2:Plot2 2 LL ff 분 L उ: Plot. 4.P10t gITIR MEMORY 3FZom Dut 4: VDecimal 5: Z5 ध山are 6: \%5taradard 7: ZTrig 8:ZInterger

WIFIOW品in=0 $\mathrm{xmax}=11$ $\mathrm{x} \mathrm{sc} 1=1$
YMin=-1 Ymax= 3 Yscl=1 Wres=1


### 2.4 Drawing a frequency histogram from a frequency table

## Example 8

Draw a frequency histogram for this data:

Number	1	2	3	4	5
Frequency	3	4	6	5	2

Enter the data in L1 and L2 (see Example 6). Press 2nd Stat plot and Enter to select Plot 1. Select On, choose the histogram option and leave XList as L1 and Freq as L2.

F1oti F1ote F1ots
Drif
 Xlist:L1 Fre변

Press zoom | 9:Stat.
The automatic scales do not usually give the best display of the histogram. You will need to change the default values.

Press window and choose options as shown. Xmin and Xmax should include the range of the data.
Ymin and Ymax should include the maximum frequency and should go below zero.
Xscl will define the width of the bars.

## Press TRACE.

Use the key to move to each of the bars and display their value and frequency.

You should now see a frequency histogram for the data in the list $1,1,3,9,2$.


WINDIO
$\mathrm{min}=0$
$\mathrm{max}=6$
$\mathrm{xsc}=1$
YMin=-1
Ymax=7
$\mathrm{yscl}=1$
4res=1



### 2.5 Drawing a box and whisker diagram from a list

## Example 9

Draw a box and whisker diagram for this data:
1, 1, 3, 9, 2.
Enter the data in L1 (see Example 5).
Press 2nd STAT PLOT and ENTER to select Plot 1.
Select On, choose the box and whisker option and leave XList as L1 and Freq as 1 .


Press zoom | 9:Stat.
The automatic scales do not usually give the best display of the box and whisker diagram. You will need to change the default values.

Press WINDow and choose options as shown.
Xmin and Xmax should include the range of the data.
Ymin and Ymax do not affect the way in which the diagram is displayed.


## WIFDIOW

Xmin=0
$\mathrm{xmax}=10$
$\mathrm{xscl}=1$
Ymin=-1 Ymax=3 $Y \leq 0 l=1$ $4 \mathrm{xres}=1$


Continued on next page

## Press TRACE

Use the $\longmapsto$ key to move the cursor over the plot to see the quartiles, Q1 and Q3, the median and the maximum and minimum values.


### 2.6 Drawing a box and whisker diagram from a frequency table

## Example 10

Draw a box and whisker diagram for this data:

Number	1	2	3	4	5
Frequency	3	4	6	5	2

Enter the data in L1 and L2
(see Example 6).
Press 2nd STATPLOT and ENTER to select Plot 1.
Select On, choose the box and whisker
diagram option and leave XList as L1 and
Freq as L2.


Press zoom | 9:Stat.
The automatic scales do not usually give the best display of the box and whisker diagram. You will need to change the default values.

Press window and choose options as shown. Xmin and Xmax should include the range of the data.
Ymin and Ymax do not affect the way in which the diagram is displayed.

## Press TRACE.

Use the key to move the cursor over the plot to see the quartiles, Q1 and Q3, the median and the maximum and minimum values.

xmin=0人max= $x=1=1$ Mir=-1 $\mathrm{Y} M \mathrm{x}=3$
$\mathrm{YE}=1$ 4 Xres=1


## Calculating statistics

You can calculate statistics such as mean, median, etc. from a list, or from a frequency table.

### 2.7 Calculating statistics from a list

## Example 11

Calculate the summary statistics for this data: $1,1,3,9,2$


### 2.8 Calculating statistics from a frequency table

## Example 12

Calculate the summary statistics for this data:

Number	1	2	3	4	5
Frequency	3	4	6	5	2

Enter the data in L1 and L2 (see Example 6).
Press STAT | CALC | 1:1-Var Stats.
Fill in the wizard.
L1 is the default list, type 2nd 12 in FreqList
Select Calculate and press ENTER.

The information shown will not fit on a single screen. You can scroll up and down to see it all.
The statistics calculated for the data are:

$$
\begin{aligned}
\text { mean } & \bar{x} \\
\text { sum } & \sum_{x} \\
\text { sum of squares } & \sum x^{2} \\
\text { sample standard deviation } & s_{x} \\
\text { population standard } & \sigma_{x} \\
\text { deviation } & \\
\text { number } & n \\
\text { minimum value } & \min X \\
\text { lower quartile } & Q_{1} \\
\text { median } & \text { Med } \\
\text { upper quartile } & Q_{3} \\
\text { maximum value } & \operatorname{Max} X
\end{aligned}
$$

On clearing the home screen, scrolling up will bring up the command 1-Var Stats L1, L2 which can then be pasted.

1-Marstary


Note: You should always use the population standard deviation $\left(\sigma_{x}\right)$ in Mathematical Studies.

### 2.9 Calculating the interquartile range

## Example 13

Calculate the interquartile range for this data:

Number	1	2	3	4	5
Frequency	3	4	6	5	2

The interquartile range is the difference between the upper and lower quartiles $\left(Q_{3}-Q_{1}\right)$.

First calculate the summary statistics for this data (see Example 12).
(Note: The values of the summary statistics are stored after One-Variable Statistics have been calculated and remain stored until the next time they are calculated.)
Press vars | 5:Statistics...| PTS | 9:Q3 ENTER - VARS | 5:Statistics... | PTS | 7:Q1 ENTER
The calculator now displays the result:
Interquartile range $=Q_{3}-Q_{1}=2$


### 2.10 Using statistics

The calculator stores the values you calculate in One-Variable Statistics so that you can access them in other calculations. These values are stored until you do another One-Variable Statistics calculation.

## Example 14

Calculate the $\bar{x}+\sigma_{x}$ for this data:

Number	1	2	3	4	5
Frequency	3	4	6	5	2

First calculate the summary statistics for this data (see Example 12).
(Note: The values of the summary statistics are stored after One-Variable
4.153120942 Statistics have been calculated and remain stored until the next time they are calculated.)
Press VARS | 5:Statistics...| 2: $\bar{x}$ ENTER - VARS | 5:Statistics... 4: $\sigma x$ ENTER The calculator now displays the result:
$\bar{x}+\sigma_{x}=4.15$ (to 3sf)

## 3 Geometry and trigonometry

This section covers the display of and reading of information from graphs of linear functions.

## Graphing

### 3.1 Graphing linear functions

## Example 15

Draw the graph of the function $y=2 x+1$.

Press $Y=$ to display the $Y=$ editor. The default graph type is Function, so the form $\mathrm{Y}=$ is displayed.
Type $2 x+1$ and press Enter.
Press zoom | 6:ZStandard to use the default axes which are $-10 \leq x \leq 10$ and $-10 \leq y \leq 10$.

The graph of $y=2 x+1$ is now displayed on the screen.


## Finding information about the graph

The GDC can give you a lot of information about the graph of a function, such as the coordinates of points of interest and the gradient (slope).

### 3.2 Finding a zero

The $x$-intercept is known as a zero of the function.

## Example 16



### 3.3 Finding the gradient (slope) of a line

The correct mathematical notation for gradient (slope) is $\frac{\mathrm{d} y}{\mathrm{~d} x}$. You will find out more about this in the chapter on differential calculus. Here we just need to know this is the notation that will give us the gradient (slope) of the line.

## Example 17

Find the gradient of $y=2 x+1$ ．	
First draw the graph of $y=2 x+1$（see Example 15）．	
Press 2nd CALC｜6： $\mathrm{d} y / \mathrm{d} x$	
Selest ENTER	
The gradient（slope）is 2.	

## 3．4 Solving simultaneous equations graphically

To solve simultaneous equations graphically you draw the straight lines and then find their point of intersection．The coordinates of the point of intersection give you the solutions $x$ and $y$ ．
Note：The calculator will only draw the graphs of functions that are expressed

Solving simultaneous equations using a non－ graphical method is covered in section 1．1． explicitly．By that we mean functions that begin with＇$y=$＇and have a function that involves only $x$ to the right of the equals sign．If the equations are written in a different form，you will need to rearrange them before using your calculator to solve them．

## Example 18

Solve the simultaneous equations $2 x+y=10$ and $x-y=2$ graphically with your GDC．
First rearrange both equations in the form $y=$

$$
\begin{array}{rlrl}
2 x+y & =10 & x-y & =2 \\
y & =10-2 x & -y & =2-x \\
y & =x-2
\end{array}
$$

To draw graphs $y=10-2 x$ and $y=x-2$ ：
Press $Y=$ to display the $Y=$ editor．The default graph type is Function， so the form $\mathrm{Y}=$ is displayed．
Type $10-2 x$ and press ENTER and $x-2$ and press ENTER．
Press zoom｜6：Z Standard to use the default axes which are $-10 \leq x \leq 10$ and $-10 \leq y \leq 10$ ．

```
F1oti F1otz F1ots
Y1日1日-2K
Yz日x一2
, Y3=
V4=
V5=
*G=
V7=
```

The calculator displays both straight line graphs
Y1 $=10-2 x$ and
Press 2nd CALC I 5:intersect
Press ENTER

## 4 Graphing quadratic and exponential functions

## Quadratic functions

### 4.1 Drawing a quadratic graph

## Example 19

Draw the graph of $y=x^{2}-2 x+3$ and display it using suitable axes.
Press $\gamma=$ to display the $\mathrm{Y}=$ editor. The default graph type is Function, so
the form $\mathrm{Y}=$ is displayed.
Type $x^{2}-2 x+3$ and press ENTER.
Press $200 \mathrm{M} \mid 6: \mathrm{Z}$ Standard to use the default axes which are $-10 \leq x \leq 10$
and $-10 \leq y \leq 10$.
The calculator displays the curve with the default axes.
Adjust the window to make the quadratic curve fit the screen better.

### 4.2 Finding a local minimum or maximum point

## Example 20

Find the minimum point on the graph of $y=x^{2}-2 x+3$.
Draw the graph of $y=x^{2}-2 x+3$ (See Example 19).


Continued on next page


Continued on next page

Press 2nd CALC \| 3:minimum   Press enter	
To find the minimum point you need to give the left and right bounds of a region that includes it.   The calculator shows a point and asks you to set the left bound. Move the point using the and keys to choose a position to the left of the minimum.   Press ENTER	
The calculator shows another point and asks you to set the right bound. Move the point using the and keys so that the region between the left and right bounds contains the minimum.   When the region contains the minimum press ENTER.	
Press ENTER again to supply a guess for the value of the minimum.   In this example the value of $x$ is not exactly 1 . This is due to the way the calculator finds the point. You should   The calculator displays the minimum ignore small errors like this when you point on the curve at $(1,2)$. write down the coordinates of the point.	

## Example 21

Find the maximum point on the graph of $y=-x^{2}+3 x-4$.
Press $Y=$ to display the $Y=$ editor. The default graph type is Function, so the form $\mathrm{Y}=$ is displayed.
Type $-x^{2}+3 x-4$ and press ENTER.
Press zoom | 6:Z Standard to use the default axes which are $-10 \leq x \leq 10$ and $-10 \leq y \leq 10$.


The calculator displays the curve with the default axes.


Continued on next page

Adjust the window to make the quadratic curve fit the screen better.	
Method 1 - using a table   You can look at the graph and a table of the values on the graph by using a split screen.   Press MODE and select G-T   Press GRAPH	
The maximum value shown in the table is -2 when $x=1$ and $x=2$.	
Look more closely at the values of the function between $x=1$ and $x=2$.   Change the settings in the table: Press 2nd TBLSET   Set TblStart to1.4   $\triangle \mathrm{Tbl}$ to 0.01   Press 2nd TABLE to return to the graph and table screen.	
Press to move to the column containing $y$-values. This shows greater precision in the box below the table.   Press to scroll down until you find the maximum value of $y$.	
The table shows that the function has smaller values at points around $(1.5,-1.75)$. We can conclude that this is a local maximum on the curve.	
Method 2 - Using the maximum function	

Continued on next page


## Exponential functions

### 4.3 Drawing an exponential graph

## Example 22

Draw the graph of $y=3^{x}+2$.
Press $\gamma=$ to display the $\mathrm{Y}=$ editor. The default graph type is Function, so the form $\mathrm{Y}=$ is displayed.
Type $3^{x}+2$ and press ENTER.
(Note: Type $3 \wedge x, T, \theta, n \rightarrow$ to enter $3^{x}$. The returns you to the baseline from the exponent.)
Press Zoom | 6:Z Standard to use the default axes which are $-10 \leq x \leq 10$ and $-10 \leq y \leq 10$.

```
Floti Flotz Flots
V1日 \(\mathrm{S}^{4}+2\)
\(\forall \varepsilon=\)
\(\forall 3=\)
\(\hat{V}_{4}=\)
Y5=
\(V_{6}=\)
```

The calculator displays the curve with the default axes.


Adjust the window to make the exponential curve fit the screen better.


### 4.4 Finding a horizontal asymptote

## Example 23

Find horizontal asymptote to graph of $y=3^{x}+2$.

Draw the graph of $y=3^{x}+2$ (See Example 22).

You can look at the graph and a table of the values on the graph by using a split screen.
Press MODE and select G-T

FLDAT 012 3 4567日

FUTHE FAFi FDL SED
GDINECTED DOT
seguenitinl sIHUL

(TABLE to switch to the table.
Press 2nd
Press to scroll up the table.
The table shows that as the values of $x$ get smaller, $Y_{1}$ approaches 2.
(TABLE to switch to the table.
Press 2nd
Press to scroll up the table.
The table shows that as the values of $x$ get smaller, $Y_{1}$ approaches 2.
(TABLE to switch to the table.
Press 2nd
Press to scroll up the table.
The table shows that as the values of $x$ get smaller, $Y_{1}$ approaches 2.
Press GRaPH

The values of the function are clearly decreasing as $x \rightarrow 0$.


Eventually the value of $\mathrm{Y}_{1}$ displayed in the table reaches 2.
Press $\upharpoonright$ to move to the column containing $y$-values. This shows greater precision in the box below the table. You can see, at the bottom of the screen, that the actual value of $Y_{1}$ is 2.00000188168...
We can say that $\mathrm{Y}_{1} \rightarrow 2$ as $x \rightarrow-\infty$.
The line $x=2$ is a horizontal asymptote to the curve $y=3^{x}+2$.


## More complicated functions

### 4.5 Solving a combined quadratic and exponential equation

## Example 24

Follow the same GDC procedure when solving simultaneous equations graphically and solving a combined quadratic and exponential equation. See Examples 18 and 24.

Solve the equation $x^{2}-2 x+3=3 \cdot 2^{-x}+4$

To solve the equation, find the point of intersection between the quadratic function $y_{1}=x^{2}-2 x+3$ and the exponential function $y_{2}=3 \times 2^{-x}+3$.

Press $\gamma=$ to display the $Y=$ editor. The default graph type is Function, so the form $\mathrm{Y}=$ is displayed.
Type $x^{2}-2 x+3$ in $\mathrm{Y}_{1}$ and press enter. Then type $3 \times 2^{-x}+4$ in $\mathrm{Y}_{2}$ and press ENTER.
(Note: Type $2 \wedge(-) X, T, \theta, n \mapsto$ to enter $2^{-x}$. The $\sqcap$ returns you to the baseline from the exponent.)

Press Zoom | 6:Z Standard to use the default axes which are $-10 \leq x \leq 10$ and $-10 \leq y \leq 10$.
The calculator displays the curves with the default axes.
Adjust the window to make the quadratic curve fit the screen better.

Press 2nd CALC | 5:intersect
Press Enter

Floti Flote Flots Y1日 $X^{2}-2 X+3$ V $2 \mathrm{~B}=3+2^{-\mathrm{h}}+4$ $v_{4}=$ V5=
$V_{6}=$

Press ENTER to select the first curve.
Press ENTER to select the second curve.
Select a point close to the intersection using the and keys
and press ENTER.
The calculator displays the intersection of the two straight lines at the point
(2.58, 4.50).
The solutions are $x=2.58$ and $y=4.50$.

## 5 Statistical applications

## Calculating normal probabilities

### 5.1 Calculating normal probabilities from $X$-values

## Example 25

A random variable $X$ is normally distributed with a mean of 195 and a standard deviation of 20 or $X \sim N\left(195,20^{2}\right)$. Calculate
a the probability that $X$ is less than 190 .
b the probability that $X$ is greater than 194 .
c the probability that $X$ lies between 187 and 196 .


a $P(X<190)$   Enter lower bound as -1 E99, upper bound as $190, \mu$ to 195 and $\sigma$ to 20 . Select Paste and press ENTER	```rovimuledf lower:-1 E99 LIFFEr:190 \mu:195 0:20 Paste```
press ENTER again $\mathrm{P}(\mathrm{X}<190)=0.401 \text { (to } 3 \mathrm{sf} \text { ) }$	$\begin{array}{r} \text { normalcdf }-1 \text { E99 } \\ .4612937256 \end{array}$
b $P(X>194)$   Enter Lower Bound as 194, Upper Bound as 1E99, $\mu$ as 195 and $\sigma$ as 20 . Select Paste and press Enter	Gurmicd lower: 194 uFFEr: 1899 $0: 26$ Paste
press ENTER again $\mathrm{P}(\mathrm{X}>194)=0.520 \text { (to } 3 \mathrm{sf} \text { ) }$	$\begin{array}{r} \text { normaledf(194,1* } \\ .519938674 \end{array}$
c $P(187<X<196)$   Enter Lower Bound as 187, Upper Bound as 196, $\mu$ as 195 and $\sigma$ as 20 .	
press ENTER again $\mathrm{P}(187<\mathrm{X}<196)=0.175 \text { (to } 3 \mathrm{sf} \text { ) }$	$\begin{array}{r} \text { normalodf } 187,1^{\prime \prime} \\ .17536571 \end{array}$

### 5.2 Calculating $X$-values from normal probabilities

In some problems you are given probabilities and have to calculate the associated values of $X$. To do this, use the invNorm function.


When using the Inverse Normal function, make sure you find the probability on the correct side of the normal curve. The areas are always the lower tail, that is they are always in the form $P(X<x)$ (see Example 26).


If you are given the upper tail $P(X>x)$, you must first subtract the probability from 1 before you can use invNorm (see Example 27).

## Example 26

A random variable $X$ is normally distributed with a mean of 75
and a standard deviation of 12 or $X \sim N\left(75,12^{2}\right)$. If $P(X<x)=0.4$,
find the value of $x$.
Press 2nd DISTR I 3:invNorm(
Press ENTER
so you can find $P(X<x)$ directly.
(probability), $\mu$ and $\sigma$, in order.

## Example 27

A random variable $X$ is normally distributed with a mean of 75 and a standard deviation of 12 or $X \sim N\left(75,12^{2}\right)$.
If $P(X>x)=0.2$, find the value of $x$.

You are given an upper-tail probability so you must first find $P(X<x)=1-0.2=0.8$. You can now use the invNorm function as before.



- This sketch of a normal distribution curve shows this value and the probabilities from Example 27.


## Scatter diagrams, linear regression and the correlation coefficient

### 5.3 Scatter diagrams

## Example 28

Consider this data that is approximately connected by a linear function.

$\boldsymbol{x}$	1.0	2.1	2.4	3.7	5.0
$\boldsymbol{y}$	4.0	5.6	9.8	10.6	14.7

a Find the equation of the least squares regression line of $y$ on $x$
b Find Pearson's product-moment correlation coefficient.
c Use the equation to predict the value of $y$ when $x=3.0$.

Press stat | 1:Edit and press ENTER.
EDIT CALC TESTS
Type the values of $x$ in the first column (L1), and the values of $y$ in the second column (L2).
Press ENTER or after each number to move down to the next cell.
Press to move to the next column.

You can use columns from L1 to L6 to enter the lists.

Press 2nd stat plot and enter to select Plot1.
Select On, choose the scatter diagram option, XList as L1 and Ylist as L2.
You can choose one of the three types of mark.

Press zoom | 9:Stat
The automatic scales do not usually give the best display of the scatter diagram. You will need to change the default values.

You may need to delete any function graphs. $Y=$


18F1 Flet2 Flots
$\mathrm{Or} 0 \mathrm{f} f$


Xlist:L1
Ylist:Lz
Mark: a


Continued on next page

Press window and choose options as shown.
Xmin and Xmax should include the range of the $x$-data.
Ymin and Ymax should include the range of the $y$-data.
You now have a scatter graph of $y$ against $x$.

You need to include zero in the range if you want to show the axes on the graph.

WINDOW
Xmir=0
Х $\mathrm{m}=\mathrm{x}=6$
$\mathrm{x}=\mathrm{c} 1=1$
Mir=0
YMax=17
$\mathrm{Yscl}=2$
+Mres=1


In order to see the Pearson's product-moment correlation coefficient, you need to have diagnostics on your GDC switched on.

Press MODE and use to scroll down to the second screen. Set STAT
DIAGNOSTICS to ON and press ENTER.
Then press 2nd Quit to return to the home screen.

Press stat | CALC |4:LinReg $(a x+b)$
Enter Xlist as L1, Ylist as L2 and leave FreqList blank
In Store RegEQ press ALPHA F4 and press ENTER to select Y1
Select Calculate and press ENTER.

You will see the coefficients of the equation of the least squares regression line and the value $r$ of the correlation coefficient.
The equation is $y=2.63 x+1.48$ (to 3 sf ).

The coefficient of determination, $r 2$, is not used in Mathematical Studies.

The value of $r$ is 0.955 (to 3 sf ).

Press GRAPH and you will see the least squares regression line and the data points that you plotted previously.


Continued on next page

Press TRACE and use the keys to move the trace along the line.
The cursor moves between the data points.
Press $\quad$ to move onto the line itself.
It is not possible to move the trace point to an exact value, so get as close to $x=3$ as you can.

From the graph, you have found that $y$ is approximately 9.5 when $x=3.0$.

Press 3 enter.
The cursor now moves to exactly 3.0 .
When $x=3.0$, an estimate of the value of $y$ is 9.36 , from the graph.


## The $\chi^{2}$ test for independence

### 5.4 Using contingency tables

Data from a contingency table is entered into a matrix. The calculator will calculate the expected frequencies, $\chi^{2}$ value, the number of degrees of freedom and the $p$-value.

## Example 29

A survey of the favorite colour for a mobile phone produced the following data.

	Black	Red	Blue	Silver
Male	48	35	33	54
Female	35	66	42	27

Test to find out if the choice of colour is independent of gender at the $5 \%$ level.

Press 2nd matrix and use the to select the EDIT menu. Press enter.	
Press 2 ENTER 4 ENTER to choose 2 rows and 4 columns.	MRTRIX[H] $2 \times 4$ 10 $1: 1=0$


Enter the data from the table above in the matrix.   Press ENTER after each.   The matrix $[\mathrm{A}]$ now contains the "observed frequencies" for the $\chi^{2}$ calculations.   The last column of the matrix is not displayed as there is not enough room on the screen.	
Press 2nd Quit to return to the home screen.   Press stat and use the to select the TESTS menu.   Select C: $\chi^{2}$-Test...   Press Enter.	
If the data is entered in matrix [A], you will not need to change anything in this screen.   Use the key to scroll down to Calculate and press ENTER .	
This shows that the $\chi^{2}$ value was 21.631, the $p$-value was 0.000078 and the number of degrees of freedom is 3 .   Since $0.000078<0.05$, we would not accept the null hypothesis that the favorite colour of phone was independent of gender.	
When you have finished, you should always check the table of expected frequencies, to ensure that they are all greater than 5 . These values are in the matrix $[B]$.   Press 2nd Matrix and use the to select the 2:[B]   Press enter	
This pastes $[\mathrm{B}]$ on the home screen.   Press enter again.   Here, none of the entries is less than 5.   Note: If there are too many expected values between 1 and 5 , you can combine rows or columns in the table.   Use to scroll right and see the fourth column of the matrix. You must do this before you press any other keys on the GDC.	[B] $\left[\begin{array}{llll}41.5 & 50.5 & 37.5 \\ 41.5 & 50.5 & 37.5\end{array}\right.$   [B] $\left.\begin{array}{lll} 50.5 & 37.5 & 40.5 \\ 50.5 & 37.5 & 40.5 \end{array}\right]$

## 6 Differential calculus

Finding gradients, tangents and maximum and minimum points

### 6.1 Finding the gradient at a point

## Example 30

Find the gradient of the cubic function $y=x^{3}-2 x^{2}-6 x+5$ at the point where $x=1.5$.	
Press $\gamma=$ to display the $Y=$ editor. The default graph type is Function, so the form $\mathrm{Y}=$ is displayed.   Type $y=x^{3}-2 x^{2}-6 x+5$ and press ENTER.   (Note: Type $x, T, \theta, n \wedge 3 \backsim$ to enter $x^{3}$. The returns you to the baseline from the exponent.)	
Press zoom \| 6:ZStandard to use the default axes which are $-10 \leq x \leq 10$ and $-10 \leq y \leq 10$.	
Adjust the window to make the cubic curve fit the screen better.	
Press 2nd CALC \| 6: $\mathrm{d} y / \mathrm{d} x$   Press Enter   Press $\square$ 5 ENTER	
The calculator displays the gradient of the curve at the point where $x=1.5$. The gradient is -5.25 .   In this example the value of $x d y / d x$ is not exactly -5.25 . This is due to the way the calculator finds the point gradient. You should ignore small errors like this when you write down the coordinates of a gradient at a point.	

### 6.2 Drawing a tangent to a curve

## Example 31

Draw a tangent to the curve $y=x^{3}-2 x^{2}-6 x+5$ where $x=-0.5$.

First draw the graph of $y=x^{3}-2 x^{2}-6 x+5$ (see Example 30).


Press 2nd DRAW
Choose 5:Tangent
Press ENTER

Press ( - ) 0 © 5 ENTER
The equation of the tangent is $y=-3.25 x+5.75$.


In this example the values -3.25 and 5.75 are not shown as being exact. This is due to the way the calculator finds the values. You should ignore small errors like this when you write down the equation of a tangent.

### 6.3 Finding maximum and minimum points

## Example 32

Find the local maximum and local minimum points on the cubic curve.
First draw the graph of $y=x^{3}-2 x^{2}-6 x+5$ (see Example 30).

Press 2nd CALC | 3:minimum


Continued on next page

To find the minimum point you need to give the left and right bounds of a region that includes it.

The calculator shows a point and asks you to set the left bound. Move the point using the and keys to choose a position to the left of the minimum.

Press Enter.


## 7 Number and algebra 2

## The finance solver

The Finance Solver will solve problems about simple loans, mortgages, and investments.

Press APPS 1:Finance...

Choose 1:TVM Solver...
Press Enter

In general in financial problems, a negative monetary amount indicates an amount you give to the bank and a positive monetary amount indicates money you receive from the bank. This can be a little confusing.


You will see this dialog box, where:
N : is the total number of payments.
$\mathrm{I}(\%)$ : is the annual interest rate as a percent.
PV: is the present value, which is negative for investments.
PMT : is the payment or regular deposit, which is negative for investments.
$\mathrm{FV}: \quad$ is the future value.
$\mathrm{P} / \mathrm{Y}$ : is the payments per year.
C/Y: is the interest calculations period per year.
PMT: is payments made at the end or beginning of each period.

### 7.1 Finding the total value of an investment

## Example 33

$\$ 1500$ is invested at a rate of $5.25 \%$ per annum. The interest is How much will the investment be worth at the end of 6 years?	vo times per year.
Press APPS 1:Finance... \| 1:TVM Solver... ENTER   Enter values into the table.   Press ENTER after entering each value to move through the table.   N: $\quad 6$   I(\%): $\quad 5.25$   PV: $\quad-1500$   PMY: 0   FV: To be calculated   P/Y: 1   C/Y: 2   PMT: END	FHT:ENL   BEGIN
Select FV and press ALPHA SOLVE The final amount is $\$ 2047.05$.	$\begin{aligned} & \mathrm{N}=6 \\ & \mathrm{P}=5.25 \\ & \mathrm{PH}=1560 \\ & \mathrm{PM}=2047.054066 \\ & \mathrm{P}=1 \\ & \mathrm{FH}=2 \\ & \mathrm{FMT}=\mathrm{ENL} \text { BEGIN } \end{aligned}$
Note: This result can also be found by using the calculation: $1500\left(1+\frac{5.25}{100}\right)^{12}$	$\begin{aligned} & 1500\left(1+\frac{5.25}{200}\right)^{12} \\ & 2047.054066 \end{aligned}$

### 7.2 Calculating payments for a loan

## Example 34

Calculate the monthly payment to repay a 4 -year loan of $\$ 12,000$ that is compounded monthly at an annual interest rate of $4.25 \%$. Payments are made at the end of each month.

Press APPS 1:Finance... | 1:TVM Solver... ENTER
Enter values into the table.

Press ENTER after entering each value to move through the table.
$\mathrm{N}: \quad 48$
I(\%): 5.25
PV: 12000
PMT: To be calculated
FV: 0
P/Y: 12
C/Y: 12
PMT: END
Select PMT and press ALPHA SOLVE

The monthly payments will be $\$ 272.29$.
Note: The answer, PMT, is negative because it is a payment made to a bank.

The repayments are made each
month so the total number of
payments, $N$, is 4 years $\times 12=48$
months.

