Using a graphic display calculator

CHAPTER OBJECTIVES:

This chapter shows you how to use your graphic display calculator (GDC) to solve the different types of problems that you will meet in your course. You should not work through the whole of the chapter – it is simply here for reference purposes. When you are working on problems in the mathematical chapters, you can refer to this chapter for extra help with your GDC if you need it.

Instructions for the TI-84 Plus calculator

Table of contents 1 Number and algebra 1 Simultaneous and quadratic equations 1.1 Solving simultaneous linear equations 2 Solving quadratic equations _____ 3 1.2 Standard form and significant figures Standard form _____ 4 1.3 Significant figures 5 1.4 2 Descriptive statistics **Entering data** 2.1 Entering lists of data _____ 6 Entering data from a frequency table _____ 6 2.2 **Drawing charts** 2.3 Drawing a frequency histogram from a list _____ 7 Drawing a frequency histogram 2.4 2.5 Drawing a box and whisker diagram from a list _____ 8 2.6 Drawing a box and whisker diagram from a frequency table _____ 9 **Calculating statistics** Calculating statistics from a list 10 2.7 2.8 Calculating statistics from a frequency table _____ 10 Calculating the interquartile range _____ 11 2.9 **2.10** Using statistics 11 3 Geometry and trigonometry Graphing Graphing linear functions _____ 12 3.1 Finding information about the graph 3.2 Finding a zero 12 3.3 Finding the gradient (slope) of a line 13 3.4 Solving simultaneous equations graphically 14

Use this list to help you to find the topic you need

4	Graphing quadratic and exponential functions					
	Quadratic functions					
	4.1	Drawing a quadratic graph	16			
	4.2	Finding a local minimum				
		or maximum point	16			
	Ехро	nential functions				
	4.3	Drawing an exponential graph	20			
	4.4	Finding a horizontal asymptote	21			
	More	complicated functions				
	4.5	Solving a combined quadratic and				
		exponential equation	22			
5	Statistic	cal applications				
	Calcu	lating normal probabilities				
	5.1	Calculating normal probabilities				
		from X-values	23			
	5.2	Calculating X-values from normal				
		probabilities	24			
	Scatt	er diagrams, linear regression				
	and t	he correlation coefficient				
	5.3	Scatter diagrams	26			
	The χ	² test for independence				
	5.4	Using contingency tables	28			
6	Differen	tial calculus				
	Findir	ng gradients, tangents and				
	maxiı	mum and minimum points				
	6.1	Finding the gradient at a point	30			
	6.2	Drawing a tangent				
		to a curve	31			
	6.3	Finding maximum and				
		minimum points	32			
7	Number	and algebra 2				
	The f	inance solver				
	7.1	Finding the total value				
		of an investment	33			
	7.2	Calculating payments for a loan	34			

Before you start

You should be familiar with:

- Important keys on the keyboard: ON 2nd DEL CLEAR Y= X, T, O, n ENTER GRAPH
- The home screen
- Changing window settings in the graph screen
- Using zoom tools in the graph screen
- Using trace in the graph screen

1 Number and algebra 1

Simultaneous and quadratic equations

1.1 Solving simultaneous linear equations

When solving simultaneous equations in an examination, you do not need to show any method of solution. You should simply write out the equations in the correct form and then give the solutions. The calculator will do all the working for you.

You will need to have the App PlySmlt2 installed on your GDC. This App is permitted by IBO in your examination.

For a reminder of how to

have a look at your GDC

manual.

perform the basic operations

Example 1

Solve the equations: 2x + y = 10 x - y = 2	
Press APPS. You will see the dialog box as shown on the right. Choose the App PlySmlt2 and press ENTER.	Har CHILUNE 1:Finance… 2:Ctl9Help 58 Pl9Smlt2
From the main menu, choose 2: SIMULT EQN SOLVER and press ENTER.	HAIN HEAU 1: Poly Root Finder 5: Simult Eqn Solver 3: About 4: Poly Help 5: Simult Help 6: Quit Polysmlt
The defaults are to solve two equations in two unknowns. Note : This is how you will use the linear equation solver in your examinations. In your project, you might want to solve a more complicated system with more equations and more variables.	STHULT EQN SOLVER HODE EQUATIONS 345678910 Unknowns 3345678910 DEC FRAD MORTAL SCI ENG FLORT 0123456789 Radian Oloman (Helpinext)
	Continued on next page

© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser's institute

Т	-	84	1	Ρl	U
		<u> </u>			

Press F5 and you will see the template on the right. Type the coefficients from two equations into the template, pressing ENTER after each number.	The equations must be in the correct order.	System Hatbik (2:23) [0] 0 1 [0] 0 1 [0] 0 1 (1,1) =0 Imathingelicer/leadisolyei
Press F5 and the calculator will solve the equations, x_1 and x_2 .	giving the solutions as	SYSTEM NATISTIC (2×3) [2 1 10 1 [1 -1 2 1 1 (2,3) = 2 IMATNIMODELICLE/LOADUSOLVED 1 1 1
The solutions are $x = 4$, $y = 2$.		SOLUTION ×1 84 ×2 =2 (MAINIMODE(SYSM) STO (F4)-D)

1.2 Solving quadratic equations

When solving quadratic equations in an examination, you do not need to show any method of solution. You should simply write out the equations in the correct form and then give the solutions. The calculator will do all the working for you.

Example 2

Solve $3x^2 - 4x - 2 = 0$	
Press APPS. You will see the dialog box as shown on the right. Choose the App PlySmlt2 and press ENTER.	13200000000000 1:Finance… 2:Ctl9Help 58 Pl9Smlt2
From the main menu, choose 1: POLY ROOT FINDER and press ENTER.	KANA KINU Poly Root Finder 2: Simult Eqn Solver 3: About 4: Poly Help 5: Simult Help 6: Quit Polysmlt

The defaults are to solve an equation of order 2 (a quadratic equation) with real roots. You do not need to change anything.	POLY BOOT FUNCER HODE ORDER 1 ≥ 3 4 5 6 7 8 9 10 ORDER 1 ≥ 3 4 5 6 7 8 9 10 ORDER 1 ≥ 3 4 5 6 7 8 9 10 ORDER 1 ≥ 3 4 5 6 7 8 9 10 DEC 1 ≥ 3 4 5 6 7 8 9 IDENIAL SCI ENG SCI ENG 1 2 3 4 5 6 7 8 9 RADIAN 0 1 2 3 4 5 6 7 8 9 RADIAN 0 1 2 3 4 5 6 7 8 9 NATIN (HELPHINEXT)
Another dialog box opens for you to enter the equation. The general form of the quadratic equation is $a_2x^2 + a_1x + a_0 = 0$, so we enter the coefficients in a_2 , a_1 and a_0 .	a2 x2+a1x+a0=0 a2 = a1 = a0 =
Here $a2 = 3$, $a1 = -4$ and $a0 = -2$. Be sure to use the (-) key to enter the negative values. Press ENTER after each value. Press F5 and the calculator will find the roots of the equation.	a2 x2+a1x+a0=0 a2 =3 a1 = -4 a0 = -2■
The solutions are $x = -0.387$ or $x = 1.72$ (3 sf).	A2 x2+a1x+a0=0 x1 81.72075922 x2 =3874258867

Standard form and significant figures

1.3 Standard form

Numbers written in standard form are in the form $a \times 10^{n}$,	2.4*10"	
where $1 \le a \le 10$ and $n \in \mathbb{Z}$.		24000
There are three different ways of entering a number in standard form.	2.4*m ⁴	
For example, to enter 2.4×10^4 press the keys		24000
2 . 4 × 1 0 ^ 4 or	2.4e4	
2. $4 \times 10^{\times} 4$ or		24666
2 . 4 EE 4		

Given that $x = 2.4 \times 10^4$ and $y = 3.6 \times 10^3$, find the value of a $2x + 3y$ b xy^2	
Enter the values using one of the three methods previously highlighted. In normal mode, the calculator will display the result either as a normal number or, if it is a large number, in standard form. Write your answer in standard form. For 3.11E11, write 3.11×10^{11} .	2*2.4*10 ⁴ +3*3.6* 58800 2*2.4*** 58800 2*2.4e4+3*3.6e3 2*2.4e4 +3*3.6e3
	Continued on next page

After you enter an exponent, you will need to press > to return to the base line of the calculation.	When you enter a number using either or 2nd 10 ^x , you should use brackets before you square the number.	2.4*10 ⁴ *(3.6*10 ³) 3.1104E11 2.4*m ⁴ *(3.6*m ³) ² 3.1104E11 2.4E4*3.6E3 ²
To change the answer to stan Choose 'SCI' for the Expone Press 2nd QUT to return to the Note : Remember to return the you have finished.	dard form, press MODE ntial Format. e calculation page. e settings back to normal when	NORMAL SOM ENG FUND 0123456789 Radian (Jenise) Fund Par Pol Seq Connecting Dot Sequentifie Simul Real a+di re^0i Full Horiz G-T +next4
All results are now given in st a 5.88×10^4 b 3.11×10^{11}	andard form:	2*2.4e4+3*3.6e3 5.88e4 2.4e4*3.6e3 ² 3.1104e11 ■
1.4 Significant figures For Mathematical Studies, ans 3 significant figures (3 sf), unle Example 4	wers to questions should be rounded to ss told otherwise.	Your GDC is not much help as it will only round to a set number of decimal places (dp).
Do these calculations. Give e a $4 \times \pi$ b 3.629×2.76	ach of your answers correct to 3 significant f $5 extbf{c} extbf{123} \times 12$	figures (3 sf).

To change the answer to 1 decimal place, press MODE. Choose '1' for the number of decimal places. Press 2nd QUT to return to the calculation page. Note: Remember to return the settings back to normal when you have finished.	NORMAL SCP. ENG FLOAT 0 1 2 3 4 5 6 7 8 9 Radian <u>Diotrigg</u> FUNC PAR POL SEQ Connected Dot Sequentified Simul Real a+bi re^0i FULL Horiz G-T +NEXT+			
 All results are now given in rounded form: a 12.6 is correct to 1 dp. This is the same as 3 sf for this example. b 10.0 is correct to 1 dp. This is the same as 3 sf for this example. c 1476 is 1480 to 3 sf. Since the rounding is before the decimal point, the GDC will not round this answer. 	4π 3.629*2.76 10.0 123*12 1476.0			

2 Descriptive statistics

You can use your GDC to draw charts to represent data and to calculate basic statistics such as mean, median, etc. Before you do this you need to enter the data in a list.

Entering data

There are two ways of entering data: as a list or as a frequency table.

2.1 Entering lists of data

Example 5

Enter the data in the list: 1, 1, 3, 9, 2.

make a chart or to do some calculations with this data. You can use columns from L1 to L6 to enter the list.

2.2 Entering data from a frequency table

Example 6

Enter the data in the table	Number	1	2	3	4	5							
	Frequency	3	4	6	5	2							
Press STAT 1:Edit and press E Type the numbers in the first of the frequencies in the second of Press ENTER or after each nu down to the next cell. Press > to move to the next co L1 and L2 will be used later to make a chart or to do som with this data. You can use c	ENTER. column (L1) a column (L2). umber to mov blumn. when you wa e calculation olumns from	and re ant s			di or lr		ILC i(st Ed:	TEST	5	L1 1 3 4 5 	L2 34 65 2	L3	2
L1 to L6 to enter the lists.													

Drawing charts

Charts can be drawn from a list or from a frequency table.

2.3 Drawing a frequency histogram from a list

Example 7

Draw a frequency histogram for this data: 1, 1, 3, 9, 2.						
Enter the data in L1 (see Example 5). Press 2nd STAT PLOT and ENTER to select Plot1. Select On, choose the histogram option and leave XList as L1 and Freq as 1.	HPlot1Off L< L L	2001 Plot2 Plot3 第一日日 Type:レーローロー 2000 日 Xlist:L1 Free:1				
Press zoom 9:Stat. The automatic scales do not usually give the best display of the histogram. You will need to change the default values.	SOUL MEMORY 37Zoom Out 4:ZDecimal 5:ZSquare 6:ZStandard 7:ZTri9 8:ZInteger 5:ZoomStat					
Press window and choose options as shown. Xmin and Xmax should include the range of the data. Ymin and Ymax should include the maximum frequency and should go below zero. Xscl will define the width of the bars.	WINDOW Xmin=0 Xmax=11 Xscl=1 Ymin=-1 Ymax=3 Yscl=1 ↓Xres=1					
 Press TRACE. Use the key to move to each of the bars and display their value and frequency. You should now see a frequency histogram for the data in the list 1, 1, 3, 9, 2. 	P1:L1					

2.4 Drawing a frequency histogram from a frequency table

Example 8

Draw a frequency histogram for this data:	Number	1	2	3	4	5	
	Frequency	3	4	6	5	2	
Enter the data in L1 and L2 (see Example 6) Press 2nd STAT PLOT and ENTER to select Plot 1 Select On, choose the histogram option and leave XList as L1 and Freq as L2.	3:Plo 4↓Plo 2:Plo 2:Plo 4↓Plo	1 1 1 1 1 1 1 1	000 0 0 0 0f	15 15 15 15 15 15 15 15 15 15 15 15 15 1		1	第四部 Plot2 Plot3 第一〇千斤 「9Pe:レー レー 明示 化・ 四・レー Xlist:L1 Freq:L2

Continued on next page

Press ZOOM 9:Stat. The automatic scales do not usually give the best display of the histogram. You will need to change the defau	You may need to delete any function graphs. Y=	SUDE MEMORY 3†Zoom Out 4:ZDecimal 5:ZSquare 6:ZStandard 7:ZTrig 8:ZInteger 5! ZoomStat	
Press WINDOW and choose Xmin and Xmax should of the data. Ymin and Ymax should maximum frequency and zero. Xscl will define the widt	e options as shown. include the range include the d should go below h of the bars.	WINDOW Xmin=0 Xmax=6 Xscl=1 Ymin=−1 Ymax=7 Yscl=1 ↓Xres=1	
Press TRACE. Use the key to move and display their value a You should now see a fraction of the data in the list 1,	to each of the bars nd frequency. equency histogram 1, 3, 9, 2.	P1:L1/L2	

2.5 Drawing a box and whisker diagram from a list

Example 9

Draw a box and whisker diagram for this dat 1, 1, 3, 9, 2.	ta:	
Enter the data in L1 (see Example 5). Press 2nd STAT PLOT and ENTER to select Plot 1. Select On, choose the box and whisker option and leave XList as L1 and Freq as 1.	Plot1Off	2011 Plot2 Plot3 UN Off Type: レーレー 加加 - 通い 2011 レー Xlist:L1 Freq:1
Press zoom 9:Stat. The automatic scales do not usually give the best display of the box and whisker diagram. You will need to change the default values.	MEMORY 31Zoom Out 4:ZDecimal 5:ZSquare 6:ZStandard 7:ZTri9 8:ZInteger 8:ZInteger	
Press window and choose options as shown. Xmin and Xmax should include the range of the data. Ymin and Ymax do not affect the way in which the diagram is displayed.	WINDOW Xmin=0 Xmax=10 Xscl=1 Ymin=−1 Ymax=3 Yscl=1 ↓Xres=1	

Continued on next page

2.6 Drawing a box and whisker diagram from a frequency table

Example 10

Draw a box and whisker diagram for this day	ta:	
Number 1 2 3 4 5		
Frequency 3 4 6 5 2		
Enter the data in L1 and L2 (see Example 6). Press 2nd STAT PLOT and ENTER to select Plot 1. Select On, choose the box and whisker diagram option and leave XList as L1 and Freq as L2.	Strift 2008 18 Plot1Off 2: Plot2Off 2: Plot2Off 2: Plot3Off 2: L1 L2 ■ 3: Plot3Off 2: L1 L2 ■ 4↓PlotsOff	MCEI Plot2 Plot3 UE Off Type: L ↓ ↓ ↓hs Min 2015 Xlist:L1 Freq:L2
Press zoom 9:Stat. The automatic scales do not usually give the best display of the box and whisker diagram. You will need to change the default values.	MEMORY 37Zoom Out 4:ZDecimal 5:ZSquare 6:ZStandard 7:ZTri9 8:ZInteger 8:ZInteger	
Press window and choose options as shown. Xmin and Xmax should include the range of the data. Ymin and Ymax do not affect the way in which the diagram is displayed.	WINDOW Xmin=0 Xmax=6 Xscl=1 Ymin=−1 Ymax=3 Yscl=1 ↓Xres=1	
Press TRACE. Use the \triangleright key to move the cursor over the plot to see the quartiles, Q1 and Q3, the median and the maximum and minimum values.	P 1:L1,L2 *	

Calculating statistics

You can calculate statistics such as mean, median, etc. from a list, or from a frequency table.

2.7 Calculating statistics from a list

Example 11

Calculate the summary statistic	, 9, 2						
Enter the data in L1 (see Examp Press STAT CALC 1:1-Var St	EDIT Die TESTS 181-Var Stats 2:2-Var Stats 3:Med-Med 4:LinRe9(ax+b) 5:QuadRe9 6:CubicRe9 74QuartRe9						
Fill in the wizard. L1 is the default list, For data in a list you should lea Select Calculate and press ENTER	Fill in the wizard. L1 is the default list, For data in a list you should leave FreqList blank. Select Calculate and press ENTER. On clearing the home screen, scrolling up will bring up the command 1-Var Stats L1, which can then be pasted.						
The information shown will no You can scroll up and down to The statistics calculated for the	<u>1-Var Stats</u> X=3.2 Σ×=16 Σ×2=96 S×=3.346640106						
mean sum sum of squares			σx=2.993325909 ↓n=5				
sample standard deviation population standard deviation	$s_x \sigma_x$		1-VarStats 1n=5 minX=1				
number minimum value lower quartile	n MinX O		Q1=1 Med=2 Q3=6 may Y=9				
median	Q ₁ Med						
upper quartile maximum value	Q_3 Max X						
Note: You should always use the Mathematical Studies.	d deviation (σ_x) in						

2.8 Calculating statistics from a frequency table

Example 12

Calculate the summary statistics for this data:

Frequency 3 4 6 5 2	Number	1	2	3	4	5
	Frequency	3	4	6	5	2

The information shown will not fit on a single screen. You can scroll up and down to see it all. The statistics calculated for the data are: $\begin{array}{c} 1 = Var Stats}{\overline{x} = 2.95} \\ \overline{x} = 59 \\ \overline{x} \times = 59 \\ \overline{x} \times = 2.95 \\ \overline{x} \times = 59 \\ \overline{x} \times = 2.95 \\ \overline{x} \times = 59 \\ \overline{x} \times = 1.234376041 \\ \sigma \times = 1.203120942 \\ \psi n = 20 \\ \hline n = 20 $	Enter the data in L1 and L2 (se Press STAT CALC 1:1-Var St Fill in the wizard. L1 is the default list, type 2nd Select Calculate and press ENTER	List:L1 FreqList:L2 Calculate		
number n minimum value min X lower quartile Q_1 median Med upper quartile Q_3 maximum value Max X Note: You should always use the population standard deviation (σ_x) in Mathematical Studies	The information shown will no up and down to see it all. The statistics calculated for the mean sum sum of squares sample standard deviation population standard deviation number minimum value lower quartile median upper quartile maximum value	t fit on a single scree data are: \bar{x} $\sum x$ $\sum x^2$ s_x^2 σ_x^2 <i>n</i> min <i>X</i> Q_1 Med Q_3 Max <i>X</i> population standard	en. You can scroll deviation (σ_x) in	$ \frac{1-VarStots}{x=2.95} \\ 5x=59 \\ 5x^2=203 \\ 5x=1.234376041 \\ \sigmax=1.203120942 \\ 4n=20 \\ \frac{1-VarStots}{1} \\ n=20 \\ \frac{1-VarStots}{1} \\ n=20 \\ minX=1 \\ Q_1=2 \\ Med=3 \\ Q_3=4 \\ maxX=5 \\ $

2.9 Calculating the interquartile range

Example 13

Calculate th	Calculate the interquartile range for this data:							nterquartile range is the	
Number 1 2 3 4 5 diff								ence between the upper and	
Frequency 3 4 6 5 2 lower quartiles $(Q_3 - Q_1)$.								r quartiles ($Q_3 - Q_1$).	
First calculate the summary statistics for this data (see Example 12). (Note: The values of the summary statistics are stored after One-Variable Statistics have been calculated and remain stored until the next time they are calculated.) Press VARS 5:Statistics PTS 9:Q3 ENTER - VARS 5:Statistics PTS 7:Q1 ENTER The calculator now displays the result: Interquartile range = $Q_3 - Q_1 = 2$								2	

2.10 Using statistics

The calculator stores the values you calculate in One-Variable Statistics so that you can access them in other calculations. These values are stored until you do another One-Variable Statistics calculation.

Calculate the	$e \overline{x} +$	σ_x f	or th	is da	ata:		
Number	1	2	3	4	5		
Frequency	3	4	6	5	2		
First calculat (Note: The v Statistics hav are calculate Press VARS The calculate $\overline{x} + \alpha = 4.14$	te the ralue re be d.) 5:St or no	e sun s of t en ca tatist: ow d:	^{x+σ×} 4.153120942				

3 Geometry and trigonometry

This section covers the display of and reading of information from graphs of linear functions.

Graphing

3.1 Graphing linear functions

Example 15

Finding information about the graph

The GDC can give you a lot of information about the graph of a function, such as the coordinates of points of interest and the gradient (slope).

3.2 Finding a zero

The *x*-intercept is known as a *zero* of the function.

Find the zero of $y = 2x + 1$.	
Draw the graph of $y = 2x + 1$ as in Example 15.	
Press 2nd CALC 2:Zero Press ENTER	Elevene 1:value 3:minimum 4:maximum 5:intersect 6:dy/dx 7:∫f(x)dx
To find the zero you need to give the left and right bounds of a region that includes the zero. The calculator shows a point and asks you to set the left bound. Move the point using the \triangleleft and \triangleright keys to choose a position to the left of the zero. Press ENTER.	Y1=2X+1 Left Bound? X=-1.276596 Y=-1.553191
The calculator shows another point and asks you to set the right bound. Move the point using the \triangleleft and \triangleright keys so that the region between the left and right bounds contains the zero. When the region contains the zero press ENTER.	Y1=2X+1 4 Guess? X=.85106383 Y=2.7021277
Press ENTER again to supply a guess for the value of the zero. The calculator displays the zero of the function $y = 2x + 1$ at the point (-0.5, 0).	Zero X=5

3.3 Finding the gradient (slope) of a line

The correct mathematical notation for gradient (slope) is $\frac{dy}{dx}$. You will find out more about this in the chapter on differential calculus. Here we just need to know this is the notation that will give us the gradient (slope) of the line.

Find the gradient of $y = 2x + 1$.	
First draw the graph of $y = 2x + 1$ (see Example 15).	
Press 2nd CALC 6: dy/dx Press ENTER	1:value 1:value 3:minimum 4:maximum 5:intersect 6:dy/dx 7:Jf(x)dx
Select any point on the line using the (and) keys and press ENTER. The gradient (slope) is 2.	dy/dx=2

3.4 Solving simultaneous equations graphically

To solve simultaneous equations graphically you draw the straight lines and then find their point of intersection. The coordinates of the point of intersection give you the solutions x and y.

Note: The calculator will only draw the graphs of functions that are expressed explicitly. By that we mean functions that begin with 'y =' and have a function that involves only x to the right of the equals sign. If the equations are written in a different form, you will need to rearrange them before using your calculator to solve them.

Solving simultaneous equations using a nongraphical method is covered in section 1.1.

Example 18

Solve the simultaneous equations 2x + y = 10 and x - y = 2 graphically with your GDC.

First rearrange both equations in the form y =

2x + y = 10 x - y = 2y = 10 - 2x -y = 2 - xy = x - 2

To draw graphs y = 10 - 2x and y = x - 2:

Press Y to display the Y = editor. The default graph type is Function, so the form Y = is displayed.

Type 10 - 2x and press ENTER and x - 2 and press ENTER.

Press ZOOM | 6:Z Standard to use the default axes which are $-10 \le x \le 10$ and $-10 \le y \le 10$.

4 Graphing quadratic and exponential functions

Quadratic functions

4.1 Drawing a quadratic graph

Example 19

4.2 Finding a local minimum or maximum point

Method 1 - using a table You can look at the graph and a table of the values on the graph by using a split screen. Press MODE and select G-T Press GRAPH	AURHAN SCI ENG SUDAT 0123456789 RADIAN (JUCRAS) SUNC PAR POL SEQ CONSECTED DOT SECUENTICS SIMUL REAL a+bi re^0i FULL HORIZ (JET) 4NEXT4
The minimum value shown in the table is 2 when $x = 1$.	X Y1 0 32 112 32 6 111 111 118 27
Look more closely at the values of the function around $x = 1$. Change the settings in the table: Press 2nd TBLSET Set TblStart to 0.98 \triangle Tbl to 0.01 Press 2nd TABLE to return to the graph and table screen.	TABLE SETUP TblStart=.98 △Tbl=.01 Indent: Fuic Ask Depend: Fuic Ask
Press > to move to the column containing <i>y</i> -values. This shows greater precision in the box below the table.	X Y1 99 2 1.01 2 1.02 2.001 1.04 2.002 Press +
The table shows that the function has larger values at points around (1, 2). We can conclude that this is a local minimum on the curve.	X Y1 98 199 1 1.01 2 2 1.01 2 2 2 2.001 1.02 2 2.001 1.04 2.002 Y1=2.0001
Method 2 - Using the minimum function	

Find the maximum point on the graph of $y = -x^2 + 3x - 4$.	
Press $y=$ to display the Y= editor. The default graph type is Function, so the form Y= is displayed. Type $-x^2 + 3x - 4$ and press ENTER. Press zoom 6:Z Standard to use the default axes which are $-10 \le x \le 10$ and $-10 \le y \le 10$.	Plot1 Plot2 Plot3 $10^{-}X^{2}+3X-4$ 2=0 3= 4= 4= 4= 4= 4= 4=
The calculator displays the curve with the default axes.	
	Continued on next page

© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser's institute

Exponential functions

4.3 Drawing an exponential graph

Draw the graph of $y = 3^x + 2$.	
Press Y to display the Y = editor. The default graph type is Function, so the form Y = is displayed. Type $3^x + 2$ and press ENTER. (Note: Type 3 \land X.T. Θ , \bullet to enter 3^x . The \bullet returns you to the baseline	Plot1 Plot2 Plot3 \Y1 0 3 ^X +2 \Y2= \Y3= \Y4=
from the exponent.) Press z_{00M} 6:Z Standard to use the default axes which are $-10 \le x \le 10$ and $-10 \le y \le 10$.	\Ys= \Y6=
	Continued on next page

4.4 Finding a horizontal asymptote

Eventually the value of Y_1 displayed in the table reaches 2.

Press \triangleright to move to the column containing *y*-values. This shows greater precision in the box below the table. You can see, at the bottom of the screen, that the actual value of Y₁ is 2.00000188168... We can say that Y₁ \rightarrow 2 as $x \rightarrow -\infty$. The line x = 2 is a horizontal asymptote to the curve $y = 3^x + 2$.

More complicated functions

4.5 Solving a combined quadratic and exponential equation

Example 24

TI-84 Plus

Follow the same GDC procedure when solving simultaneous equations graphically and solving a combined quadratic and exponential equation. See Examples 18 and 24.

5 Statistical applications

Calculating normal probabilities

5.1 Calculating normal probabilities from X-values

Example 25

A random variable X is normally distributed with a mean of 195 and a standard deviation

of 20 or $X \sim N(195, 20^2)$. Calculate

- **a** the probability that *X* is less than 190.
- **b** the probability that *X* is greater than 194.
- **c** the probability that *X* lies between 187 and 196.

Press 2nd DISTR | 2:normalcdf(

Press ENTER You should enter the values, Lower Bound, Upper Bound, μ and σ , in order.

The value 1E99 is the largest value that can be entered in the GDC and is used in the place of ∞ . It stands for 1×10^{99} (-1E99 is the smallest value and is used in the place of $-\infty$). To enter the E, you need to press 2nd EE.

DISUS DRAW 1:normaledf(3:invNorm(4:invT(5:tedf(6:tcdf(74X2edf(

a $P(X < 190)$ Enter lower bound as $-1E99$, upper bound as 190 , μ to 195 as Select Paste and press ENTER	nd σ to 20. lower: -1ε99 upper: 190 μ: 195 σ: 20 Paste
press ENTER again P(X < 190) = 0.401 (to 3 sf)	normalcdf(-1£99⊧ .4012937256
b $P(X > 194)$ Enter Lower Bound as 194, Upper Bound as 1E99, μ as 195 Select Paste and press ENTER	and σ as 20. and σ as 20. upper: 194 μ: 195 σ: 20 Paste
press ENTER again P(X > 194) = 0.520 (to 3 sf)	normalcdf(194,1) .519938874
 <i>P</i>(187 < <i>X</i> < 196) Enter Lower Bound as 187, Upper Bound as 196, μ as 195 and 	id σ as 20. lower: 187 upper: 196 μ: 195 σ: 20 Paste
press ENTER again P(187 < X < 196) = 0.175 (to 3 sf)	normalcdf(187,1» .1753605711 ■

5.2 Calculating X-values from normal probabilities

In some problems you are given probabilities and have to calculate the associated values of *X*. To do this, use the invNorm function.

When using the Inverse Normal function, make sure you find the probability on the correct side of the normal curve. The areas are always the lower tail, that is they are always in the form P(X < x) (see Example 26).

If you are given the upper tail P(X > x), you must first subtract the probability from 1 before you can use invNorm (see Example 27).

Example 26

Example 27

A random variable *X* is normally distributed with a mean of 75 and a standard deviation of 12 or $X \sim N(75, 12^2)$. If P(X > x) = 0.2, find the value of *x*.

You are given an upper-tail probability so you must first find P(X < x) = 1 - 0.2 = 0.8. You can now use the invNorm function as before.

		TI-84 Plus
Press 2nd DISTR 3:invNorm(Press ENTER	You should enter the values: area (probability), μ and σ , in order.	DENS DRAW 1:normaledf(2:normaledf(5:invNorm(4:invT(5:tedf(6:tedf(7↓X2edf(
Enter area as 0.8, μ as 75 and σ as 12	2.	inviorm area:0.8 μ:75 σ:12 Paste
press ENTER again So if $P(X > x) = 0.2$ then $x = 85.1$ (to	9 3sf).	invNorm(0.8,75,⊧ 85.0994548

Scatter diagrams, linear regression and the correlation coefficient

5.3 Scatter diagrams

Example 28

Consider this data that is approximately connected by a linear function.

x	1.0	2.1	2.4	3.7	5.0
у	4.0	5.6	9.8	10.6	14.7

a Find the equation of the least squares regression line of y on x

- **b** Find Pearson's product-moment correlation coefficient.
- **c** Use the equation to predict the value of y when x = 3.0.

 Press window and choose options as shown. Xmin and Xmax should include the range of the <i>x</i>-data. Ymin and Ymax should include the range of the <i>y</i>-data. You now have a scatter graph of <i>y</i> against <i>x</i>. 	WINDOW Xmin=0 Xmax=6 Xscl=1 Ymin=0 Ymax=17 Yscl=2 ↓Xres=1 • • •
In order to see the Pearson's product-moment correlation coefficient, you need to have diagnostics on your GDC switched on. Press MODE and use to scroll down to the second screen. Set STAT DIAGNOSTICS to ON and press ENTER. Then press 2nd QUIT to return to the home screen.	TBACK T HATHIBALITI CLASSIC ANSHERS: [1110] DEC FRAC GOTO FORMAT GRAPH: [111] GOTO FORMAT GRAPH: [111] YES STAT DIAGNOSTICS: OFF [111] STAT HIZARDS: [111] OFF SET CLOCK STATE ON SET CLOCK STATE ON SET CLOCK
Press STAT CALC 4:LinReg($ax + b$) Enter Xlist as L1, Ylist as L2 and leave FreqList blank In Store RegEQ press ALPHA F4 and press ENTER to select Y1 Select Calculate and press ENTER.	Lingslowed Xlist:L1 Ylist:L2 Y1 Y6 FreqList: V2 Y7 Store Reg Y3 Y8 Calculate Y4 Y9 Y5 Y0 FRAC FUNC #TAH YVAR
You will see the coefficients of the equation of the least squares regression line and the value <i>r</i> of the correlation coefficient. The equation is $y = 2.63x + 1.48$ (to 3sf). The value of <i>r</i> is 0.955 (to 3sf).	unas 9=ax+b a=2.628199748 b=1.475912715 r²=.9115303479 r=.9547409847
Press GRAPH and you will see the least squares regression line and the data points that you plotted previously.	

The χ^2 test for independence

5.4 Using contingency tables

Data from a contingency table is entered into a matrix. The calculator will calculate the expected frequencies, χ^2 value, the number of degrees of freedom and the *p*-value.

Example 29

A survey	of the fa	vorite colo	our for a	mobile ph	none produced the following data.
	Black	Red	Blue	Silver	
Male	48	35	33	54	
Female	35	66	42	27	
Test to fi	nd out if	the choice	of colou	ır is indep	bendent of gender at the 5% level.
Press 2nd MATRIX and use the > to select the EDIT menu. Press ENTER. NAMES MATH EDIA 2: [B] 3: [C] 4: [D] 5: [E] 6: [F] 7. [G]					
Press 2 ENTER 4 ENTER to choose 2 rows and 4 columns. MATRIX[A] 2 ×4 [0] 0 0 0 1,1=0					

Enter the data from the table above in the matrix. Press ENTER after each. The matrix [A] now contains the "observed frequencies" for the χ^2 calculations.	The last column of the matrix is not displayed as there is not enough room on the screen.	MATRIX[A] 2 ×4 [48] 35 33 [35] 66 67
Press 2nd QUT to return to the home screen. Press STAT and use the \rightarrow to select the TESTS menu. Select C: χ^2 -Test Press ENTER.		EDIT CALC MESHE ؆2-SampTInt A:1-PropZInt B:2-PropZInt MEX2-Test D:X2GOF-Test E:2-SampFTest F↓LinRe9TTest
If the data is entered in matrix [A], you will not need this screen. Use the relation key to scroll down to Calculate and press	d to change anything in	B2=1000 Observed:[A] Expected:∎B] Calculate Draw
This shows that the χ^2 value was 21.631, the <i>p</i> -value number of degrees of freedom is 3. Since 0.000078 < 0.05, we would not accept the null favorite colour of phone was independent of gender.	was 0.000078 and the hypothesis that the	<mark>82=Test</mark> X2=21.63099606 P=7.7840873E ⁻⁵ df=3
When you have finished, you should always check the frequencies, to ensure that they are all greater than 5 the matrix [B]. Press 2nd MATRIX and use the v to select the 2:[B] Press ENTER	ne table of expected . These values are in	MATH EDIT 1:[A] 2×4 3:[C] 4:[D] 5:[E] 6:[F] 7↓[G]
This pastes [B] on the home screen. Press ENTER again. Here, none of the entries is less than 5. Note: If there are too many expected values between 1 and 5, you can combine rows or columns in the table.	Use to scroll right and see the fourth column of the matrix. You must do this before you press any other keys on the GDC.	[B] [41.5 50.5 37.5 [41.5 50.5 37.5*
		[B] ,50.5 37.5 40.5] ∮50.5 37.5 40.5]

6 Differential calculus

Finding gradients, tangents and maximum and minimum points

6.1 Finding the gradient at a point

Find the gradient of the cubic function $y = x^3 - 2x^2 - 6x + 5$ at the point where $x = 1.5$.				
Press Y= to display the Y= editor. The d the form Y= is displayed. Type $y = x^3 - 2x^2 - 6x + 5$ and press ENTE (Note: Type $x, T, \Theta, n \land 3$) to enter x^3 . from the exponent.)	Plot1 Plot2 Plot3 $Y_1 \blacksquare X^3 - 2X^2 - 6X + 5$ $Y_2 = \blacksquare$ $Y_3 =$ $Y_4 =$ $Y_5 =$ $Y_6 =$			
Press $200M$ 6:ZStandard to use the defa and $-10 \le y \le 10$.				
Adjust the window to make the cubic cu	rve fit the screen better.			
Press 2nd CALC $6: dy/dx$ Press ENTER Press 1 . 5 ENTER		1:value 2:zero 3:minimum 4:maximum 5:intersect 38dy/dx 7:Jf(x)dx		
The calculator displays the gradient of the curve at the point where $x = 1.5$. The gradient is -5.25 .	In this example the value of xdy/dx is not exactly –5.25. This is due to the way the calculator finds the point gradient. You should ignore small errors like this when you write down the coordinates of a gradient at a point.	dv/dx=~5.249999		

6.2 Drawing a tangent to a curve

Example 31

6.3 Finding maximum and minimum points

Example 32

7 Number and algebra 2

The finance solver

The Finance Solver will solve problems about simple loans, mortgages, and investments.

Press APPS 1: Finance...

Choose 1:TVM Solver... Press Enter In general in financial problems, a negative monetary amount indicates an amount you give to the bank and a positive monetary amount indicates money you receive from the bank. This can be a little confusing.

You will see this dialog box, where:

- N: is the total number of payments.
- I(%): is the annual interest rate as a percent.
- PV: is the present value, which is negative for investments.
- PMT : is the payment or regular deposit, which is negative for investments.
- FV: is the future value.
- P/Y: is the payments per year.
- C/Y: is the interest calculations period per year.
- PMT: is payments made at the end or beginning of each period.

7.1 Finding the total value of an investment

Example 33

7.2 Calculating payments for a loan

Example 34

Calculate the monthly payment to repay a 4-year loan of \$12,000 that is compounded monthly at an annual interest rate of 4.25%. Payments are made at the end of each month.

Continued on next page

34

TI-84 Plus

Press APPS 1:Finance 1:TVM Sol Enter values into the table.	N=48 1%=4.25				
Press ENTER after entering each value t	PV=1200 PMT=∎ FV=0 P∕Y=1				
N: 48					
I(%): 5.25	The repayments are made each	PMI: BEGIN			
PV: 12000	payments, N, is 4 years \times 12 = 48				
PMT: To be calculated	months.				
FV: 0					
P/Y: 12					
C/Y: 12					
PMT: END					
Select PMT and press ALPHA SOLVE					
The monthly payments will be \$272.29 $PV=12000$					
Note: The answer, PMT, is negative b	РМТ= -272.29317 FV=0 P/Y=12 C/Y=12 РМТ-1=Я№ РЕСТЫ				
		THE PLANE DECIN			