17 Using a graphic display calculator

3

Δ

5

CHAPTER OBJECTIVES:

This chapter shows you how to use your graphic display calculator (GDC) to solve the different types of problems that you will meet in your course. You should not work through the whole of the chapter – it is simply here for reference purposes. When you are working on problems in the mathematical chapters, you can refer to this chapter for extra help with your GDC if you need it.

Instructions for the TI-84 Plus calculator

Chapter contents

1 Functions

_			
	1.1	Graphing linear functions 2	
	Finding information about the graph		
	1.2	Finding a zero2	
	1.3	Finding the gradient (slope) of a line	
	1.4	Solving simultaneous equations	
		graphically4	
	Simu	ltaneous and quadratic equations	
	1.5	Solving simultaneous linear equations	
	Quad	ratic functions	
	1.6	Drawing a quadratic graph 7	
	1.7	Solving quadratic equations 7	
	1.8	Finding a local minimum or maximum	
		point 8	
	Ехро	nential functions	
	1.9	Drawing an exponential graph 12	
	1.10	Finding a horizontal asymptote 13	
	Loga	rithmic functions	
	1.11	Evaluating logarithms 14	
	1.12	Finding an inverse function 14	
	1.13	Drawing a logarithmic graph 15	
	Trigo	nometric functions	
	1.14	Degrees and radians 16	
	1.15	Drawing trigonometric graph 17	
	More	complicated functions	
	1.16	Solving a combined quadratic and	
		exponential equation 17	
	1.17	Using sinusoidal regression 19	
2	Differen	tial calculus	
	Findi	ng gradients, tangent and maximum and	
	minin	num points	
	2.1	Finding the gradient at a point	
	2.2	Drawing a tangent to a curve 21	
	2.3	Finding maximum and minimum	
		points	
	2.4	Finding a numerical derivative 23	
	2.5	Graphing a numerical derivative 23	

Use this list	t to help you to find the topic you need		
Integral calculus			
3.1	Finding the value of an indefinite		
	integral	26	
3.2	Finding the area under a curve	26	
Vectors			
Scala	ır product		
4.1	Calculating a scalar product	28	
4.2	Calculating the angle between two		
	vectors	29	
Statisti	cs and probability		
Enter	ring data		
5.1	Entering lists of data	30	
5.2	Entering data from a frequency table	31	
Draw	ing charts		
5.3	Drawing a frequency histogram from		
	a list	31	
5.4	Drawing a frequency histogram from a		
	frequency table	32	
5.5	Drawing a box and whisker diagram		
	from a list	32	
5.6	Drawing a box and whisker diagram from		
	a frequency table	33	
Calcu	llating statistics		
5.7	Calculating statistics from a list	34	
5.8	Calculating statistics from a frequency		
	table	35	
5.9	Calculating the interquartile range	35	
5.10	Using statistics	36	
Calcu	Ilating binomial probabilities		
5.11	Use of nCr	36	
5.12	Calculating binomial probabilities	37	
Calcu	llating normal probabilities		
5.13	Calculating normal probabilities from		
	X-values	39	
5.14	Calculating X-values from normal		
	probabilities	40	
Scatt	ter diagrams, linear regression and the		
corre	lation coefficient		
5.15	Scatter diagrams	41	

Before you start

You should be familiar with:

- Important keys on the keyboard: ON 2nd DEL CLEAR Y= X, T, O, N ENTER GRAPH
- The home screen
- Changing window settings in the graph screen
- Using zoom tools in the graph screen
- Using trace in the graph screen

1 Functions

1.1 Graphing linear functions

Example 1

For a reminder of how to perform the basic operations have a look at your GDC manual.

Finding information about the graph

The GDC can give you a lot of information about the graph of a function, such as the coordinates of points of interest and the gradient (slope).

1.2 Finding a zero

The *x*-intercept is known as a *zero* of the function.

Example 2

TI-84 Plus

1.3 Finding the gradient (slope) of a line

The correct mathematical notation for gradient (slope) is $\frac{dy}{dx}$. You will find

out more about this in the chapter on differential calculus. Here we just need to know this is the notation that will give us the gradient (slope) of the line.

Example 3

Press 2nd CALC 6: dy/dx . Press ENTER.	1:value 1:value 2:minimum 4:maximum 5:intersect 6:dy/dx 7:Jf(x)dx
Select any point on the line using the (and) keys and press ENTER. The gradient (slope) is 2.	dy/dx=2

1.4 Solving simultaneous equations graphically

To solve simultaneous equations graphically you draw the straight lines and then find their point of intersection. The coordinates of the point of intersection give you the solutions x and y.

Note: The calculator will only draw the graphs of functions that are expressed explicitly. By that we mean functions that begin with 'y =' and have a function that involves only x to the right of the equals sign. If the equations are written in a different form, you will need to rearrange them before using your calculator to solve them.

Solving simultaneous equations using a nongraphical method is covered in section 1.5.

Example 4

To draw graphs $y = 10 - 2x$ and $y = x - 2$.Press $Y =$ to display the Y= editor. The default graph type is Function, so the form Y= is displayed.Flot1 Plot2 Plot3Type 10 - 2x and press ENER and $x - 2$ and press ENER.Press ZooM 6:Z Standard to use the default axes which are $-10 \le x \le 10$ and $-10 \le y \le 10$.Flot2 Plot3The calculator displays both straight line graphs Y1 = 10 - 2x and Y2 = $x - 2$ Flot1 Plot2 Plot3	Solve the simultaneous equations $2x + y = 10$ and $x - y = 2$ graphically with your GDC. First rearrange both equations in the form $y = 2x + y = 10$ $x - y = 2$ y = 10 - 2x $-y = 2 - xy = x - 2$		
The calculator displays both straight line graphs Y1 = 10 - 2x and Y2 = x - 2	To draw graphs $y = 10 - 2x$ and $y = x - 2$. Press $Y=$ to display the Y= editor. The default graph type is Function, so the form Y= is displayed. Type $10 - 2x$ and press ENTER and $x - 2$ and press ENTER. Press ZOOM 6:Z Standard to use the default axes which are $-10 \le x \le 10$ and $-10 \le y \le 10$.	Plot1 Plot2 Plot3 \Y1810-2X \Y28X-2 \Y3= \Y4= \Y5= \Y6= \Y7=	
	The calculator displays both straight line graphs Y1 = 10 - 2x and Y2 = x - 2		

	TI-84 Plus
Press 2nd CALC 5:intersect. Press ENTER.	1:value 2:zero 3:minimum 4:maximum 5 : dy/dx 7:Jf(x)dx
Press ENTER to select the first curve.	Y1=10-2X First curve? X=0
Press ENTER to select the second curve.	Y2=X-2 Second curve? X=0 Y=-2
Select a point close to the intersection using the (and) keys and press ENTER.	Y2=X-2 Guess? X=3.6170213 Y=1.6170213 (
The calculator displays the intersection of the two straight lines at the point (4, 2). The solutions are $x = 4$, $y = 2$.	Intersection X=4

Simultaneous and quadratic equations

1.5 Solving simultaneous linear equations

When solving simultaneous equations in an examination, you do not need to show any method of solution. You should simply write out the equations in the correct form and then give the solutions. The calculator will do all the working for you.

You will need to have the App PlySmlt2 installed on your GDC. This App is permitted by IBO in your examination.

Example 5

Solve the equations: 2x + y = 10 x - y = 2	
Press APPS. You will see the dialog box as shown on the right. Choose the App PlySmlt2 and press ENTER.	1:Finance… 2:Ct19Help 58Pl9Smlt2
From the main menu, choose 2: SIMULT EQN SOLVER and press ENTER.	HAIN HENU 1: POLY ROOT FINDER 5: Simult Eqn Solver 3: About 4: Poly Help 5: Simult Help 6: Quit Polysmlt
The defaults are to solve two equations in two unknowns.	SIMULT EQN SOLVER HODE
Note : This is how you will use the linear equation solver in your examinations. In your project, you might want to solve a more complicated system with more equations and more variables.	EQUATIONS 345678910 UNKNOHNS 345678910 DEC 3800 Morrige SCI Eng Sedian 0123456789 Radian 0307899 (Main) (Helpunext)
Press F5 and you will see the template on the right.	SYSTEM MATRIX (2×3)
Type the coefficients from two equations into the template, pressing ENTER after each number. The equations must be in the correct order.	tö ő ő i (1,1)=0
	(MAINIMODETCLRILOADISOLVE)
Press [F5] and the calculator will solve the equations, giving the solutions in the as x_1 and x_2 .	SYSTEM MATRIX (2×3) [2 1 10] [1 -1 2]
	(AAINIMODEICLRILDADISOLVE)
	Continued on next page

The solutions are x = 4, y = 2. **SOLUTION X1 B4 X2 = 2 IMAINIMODE SYSHI STO IF 4+D**

Quadratic functions

1.6 Drawing a quadratic graph

Example 6

Draw the graph of $y = x^2 - 2x + 3$ and display it using suitable axes.			
Press Y- to display the Y= editor. The default graph type is Function, so the form Y= is displayed. Type $x^2 - 2x + 3$ and press ENTER. Press ZOOM 6:Z Standard to use the default axes which are $-10 \le x \le 10$ and $-10 \le y \le 10$.	Plot1 Plot2 Plot3 $Y_1 = X^2 - 2X + 3$ $Y_2 = Y_3 = Y_4 = Y_5 = Y_6 = Y_6 = $		
The calculator displays the curve with the default axes.			
Adjust the window to make the quadratic curve fit the screen better.			

1.7 Solving quadratic equations

When solving quadratic equations in an examination, you do not need to show any method of solution. You should simply write out the equations in the correct form and then give the solutions. The GDC will do all the working for you.

Example 7

Solve $3x^2 - 4x - 2 = 0$	
Press APPS. You will see the dialog box as shown on the right. Choose the App PlySmlt2 and press ENTER.	18800000000000000000000000000000000000
	Continued on next page

From the main menu, choose 1: POLY ROOT FINDER and press ENTER.	KATAO KIENU Poly Root Finder 2: Simult Eqn Solver 3: About 4: Poly Help 5: Simult Help 6: Quit Polysmlt
The defaults are to solve an equation of order 2 (a quadratic equation) with real roots. You do not need to change anything.	BOLY ROOT FUNCER HODE DRDER 1 2 3 4 5 6 7 8 9 10 DRDER 1 2 3 4 5 6 7 8 9 10 DEC 1870 DEC 1870 MURNEL SCI ENG FLORT 0 1 2 3 4 5 6 7 8 9 RADIAN DECREE MAIN MELPINEXTI
Another dialog box opens for you to enter the equation. The general form of the quadratic equation is $a2x^2 + a1x + a0 = 0$, so we enter the coefficients in <i>a</i> 2, <i>a</i> 1 and <i>a</i> 0.	a2 X ² +a1X+a0=0 a2 = a1 = a0 =
Here $a2 = 3$, $a1 = -4$ and $a0 = -2$. Be sure to use the (-) key to enter the negative values. Press ENTER after each value. Press F5 and the calculator will find the roots of the equation.	a2 x ² +a1x+a0=0 a2 =3 a1 = -4 a0 = -2■
The solutions are $x = -0.387$ or $x = 1.72$ (3 sf).	a2×2+a1×+a0=0 ×1 ■1.72075922 ×2 =3874258867

1.8 Finding a local minimum or maximum point

TI-84 Plus

Method 1 - using a table You can look at the graph and a table of the values on the graph by using a split screen. Press MODE and select G-T. Press GRAPH.	NURHAL SCI ENG FLOAT 0123456789 RADIAN (JODRES FUNC PAR POL SEQ CUNNECTED DOT SEQUENTIAL SIMUL REAL a+bi re^0i FULL HORIZ (JEN +NEXT+
The minimum value shown in the table is 2 when $x = 1$.	X Y1 01 22 34 5 5 5 5 27
Look more closely at the values of the function around $x = 1$. Change the settings in the table: Press 2nd TBLSET. Set TblStart to 0.98 \triangle Tbl to 0.01 Press 2nd TABLE to return to the graph and table screen.	TABLE SETUP TblStart=.98
Press \triangleright to move to the column containing <i>y</i> -values. This shows greater precision in the box below the table.	X Y1 KS: 2 .99 2 1 1.01 2 1.01 2 1.02 2.001 1.02 2.001 1.04 2.002 Press + for atbl
The table shows that the function has larger values at points around (1, 2). We can conclude that this is a local minimum on the curve.	X Y1 .98 .99 1 2 1.01 2 1.02 2 1.03 2.001 1.04 2.002 Y1=2.0001

The calculator displays the curve with the default axes.	
Adjust the window to make the quadratic curve fit the screen better.	
Method 1 - using a table You can look at the graph and a table of the values on the graph by using a split screen. Press MODE and select G-T. Press GRAPH.	NURNAL SCI ENG FLOAT 0123456789 RADIAN (DECTROS FUNC PAR POL SEQ CONNECTED DOT SEQUENTIAL SIMUL REAL a+bi re^0i FULL HORIZ (FI) 4NEXT4
The maximum value shown in the table is -2 when $x = 1$ and $x = 2$.	Х <u>Ү</u> 1
Look more closely at the values of the function between $x = 1$ and $x = 2$. Change the settings in the table: Press 2nd TBLSET. Set TblStart to1.4 \triangle Tbl to 0.01 Press 2nd TABLE to return to the graph and table screen.	TABLE SETUP TblStart=1.4 ATbl=.01 Indent: Mute Ask Depend: Mute Ask
 Press → to move to the column containing <i>y</i>-values. This shows greater precision in the box below the table. Press → to scroll down until you find the maximum value of <i>y</i>. 	X Y1
The table shows that the function has smaller values at points around $(1.5, -1.75)$. We can conclude that this is a local maximum on the curve.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Method 2 - Using the maximum funct		
Press 2nd CALC 4:maximum. Press ENTER.	1:value 2:zero 3:minimum 9 H maximum 5:intersect 6:d9/dx 7:Jf(x)dx	
To find the maximum point you need region that includes it. The calculator shows a point and asks the point using the \triangleleft and \triangleright keys to a maximum. Press ENTER.	Y1=-X^2+3X-4 Left Bound? X=.92553192 Y=-2.080014	
The calculator shows another point and Move the point using the (and) kee and right bounds contains the minimu When the region contains the minimu	Y1=-X^2+3X-4 	
Press ENTER again to supply a guess for the value of the minimum. The calculator displays the maximum point on the curve at $(1.5, -1.75)$.	In this example the value of x is not exactly 1.5. This is due to the way the calculator finds the point. You should ignore small errors like this when you write down its coordinates.	Maximum X=1.5000013 Y=-1.75.

Exponential functions

1.9 Drawing an exponential graph

Draw the graph of $y = 3^x + 2$.	
Press Y= to display the Y= editor. The default graph type is Function, so the form Y= is displayed. Type $3^x + 2$ and press ENTER. (Note: Type 3 \land X,T, Θ , n \triangleright to enter 3^x . The \triangleright returns you to the baseline from the exponent.) Press ZOOM 6:ZStandard to use the default axes which are $-10 \le x \le 10$ and $-10 \le y \le 10$.	Plot1 Plot2 Plot3 \Y1 0 3 ⁸ +2 \Y2= \Y3= \Y4= \Y5= \Y6=
	Continued on next page

TI-84 Plus

1.10 Finding a horizontal asymptote

TI-84 Plus

Eventually the value of Y_1 displayed in the table reaches 2.

Press **>** to move to the column containing *y*-values. This shows greater precision in the box below the table. You can see, at the bottom of the screen, that the actual value of Y_1 is 2.00000188168...

We can say that $Y_1 \rightarrow 2$ as $x \rightarrow -\infty$.

The line x = 2 is a horizontal asymptote to the curve $y = 3^{x} + 2$.

Logarithmic functions

1.11 Evaluating logarithms

Example 12

Evaluate $\log_{10} 3.95$, $\ln 10.2$ and $\log_5 2$.	
Press ALPHA F2 5:logBASE(to open the log template. Enter the base and the argument then press ENTER.	1: abs(2: Σ(3: nDeriv(4: fnInt(5: 109BASE(FRAC FUNC MTRX YVAR)
For natural logarithms it is possible to use the same method, with the base equal to <i>e</i> , but it is quicker to press N . Note that the GDC will evaluate logarithms with any base without having to use the change of base formula.	lo9 ₁₀ (3.95) .5965970956 ln(10.2) 2.32238772 lo9 ₅ (2)

1.12 Finding an inverse function

The inverse of a function can be found by interchanging the *x* and *y* values. Geometrically this can be done by reflecting points in the line y = x.

Show that the inverse of the function $y = 10^x$ is $y = \log_{10} x$ by reflecting $y = 10^x$ in the line $y = x$.		
Draw the line $y = x$ so that it can be recogn Press Y= to display the Y= editor. The degraph type is Function, so the form Y= is Type x and press ENTER. Type 10 ^x and press ENTER.	phised as the axis of reflection. fault displayed. Note: Type 1 0 \land X, T, Θ , n \triangleright to enter 10 ^x . The \triangleright returns you to the baseline from the exponent.	Plot1 Plot2 Plot3 \Y18X \Y2810 ^X \Y3= \Y4= \Y5= \Y6=
Press window and choose options as show This will set up square axes $-4.7 \le x \le 4$. same horizontal and vertical scales.	n. 7 and $-3.1 \le y \le 3.1$. with the	WINDOW Xmin=-4.7 Xmax=4.7 Xscl=1 Ymin=-3.1 Ymax=3.1 Yscl=1 ↓Xres=1
		Continued on next page

1.13 Drawing a logarithmic graph

	TI-84 Plus
Type $2\log_{10}(x) + 3$ and press ENTER. Press ZOOM 6:XStandard so that the calculator displays the curve with the default axes.	Plot1 Plot2 Plot3 \Y182109 ₁₀ (X)+3 \Y2= \Y3= \Y4= \Y5= \Y6=
The calculator displays the curve with the default axes.	
Change the axes to make the logarithmic curve fit the screen better.	

Trigonometric functions

1.14 Degrees and radians

Work in trigonometry will be carried out either in degrees or radians. It is important, therefore, to be able to check which mode the calculator is in and to be able to switch back and forth

Change angle settings from radians to degrees and from degrees to radians.	
Press MODE. Select either RADIAN or DEGREE using the A keys. Press ENTER. Press 2nd QUIT.	NURHAL SCI ENG FLOAT 0123456789 RADTAN DEGREE FUNC PAR POL SEQ CONNECTED DOT SEQUENTIAL SIMUL REAL a+Di re^0i FULL HORIZ G-T +NEXT+

1.15 Drawing a trigonometric graph

Example 16

Draw the graph of $y = 2\sin\left(x + \frac{\pi}{6}\right) + $	1.	
Press Y= to display the Y= editor. The the form Y= is displayed. Type $y = 2\sin\left(x + \frac{\pi}{6}\right) + 1$ and press E	ne default graph type is Function, so	Plot1 Plot2 Plot3 $Y_1 \equiv 2 \sin \left(X + \frac{\pi}{6} \right)$ $Y_2 =$ $Y_3 =$ $Y_4 =$ $Y_5 =$ $Y_6 =$
Press $200M$ 7:ZTrig. The default axes are $-6.15 \le x \le 6.15$	5 and $-4 \le y \le 4$. The notation $\sin^2 x$, $\cos^2 x$, $\tan^2 x$, is a mathematical convention that has little algebraic meaning. To enter these functions on the GDC, you should enter $(\sin(x))^2$, etc. However, the calculator will conveniently interpret $\sin(x)^2$ as $(\sin(x))^2$.	
More complicated function 1.16 Solving a combined qua and exponential equation Example 17	ons dratic on	Follow the same GDC procedure when solving simultaneous equations graphically and solving a combined quadratic and exponential equation. See Examples 18 and 24.

Solve the equation $x^2 - 2x + 3 = 3 \cdot 2^{-x} + 4$	To solve the equation, find the point of intersection between the quadratic function $y_1 = x^2 - 2x + 3$ and the exponential function $y_2 = 3 \times 2^{-x} + 3$.
Press Y= to display the Y= editor. The default graph type is Function, so the form Y= is displayed. Type $x^2 - 2x + 3$ in Y ₁ and press ENTER. Then type $3 \times 2^{-x} + 4$ in Y ₂ and press ENTER. (Note: Type 2 \land (-) X, T, Θ , n \triangleright to enter 2 ^{-x} . The \triangleright returns you to the baseline from the exponent.)	Plot1 Plot2 Plot3 $Y_1 \equiv X^2 - 2X + 3$ $Y_2 \equiv 3 \times 2^{-8} + 4$ $Y_3 = \blacksquare$ $Y_4 =$ $Y_5 =$ $Y_6 =$
Press $200M 6:Z$ Standard to use the default axes which are $-10 \le x \le 100$ and $-10 \le y \le 10$. The calculator displays the curves with the default axes.	°
	Continued on next page

© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser's institute

1.17 Using sinusoidal regression

Example 18

It is known that the following data can be modelled using a sine curve:	
x 0 1 2 3 4 5 6 7	
y 6.9 9.4 7.9 6.7 9.2 8.3 6.5 8.9	
Use sine regression to find a function to model this data.	
Press STAT 1:Edit and press F3 . Type the <i>x</i> -values in the first column (L1) and the <i>y</i> -values in the second	L1 L2 L3 1
column (L2).	1 9.4
Press ENTER or \checkmark after each number to move down to the next cell.	5 <u>6.</u> 7 5 <u>9.2</u>
Press \triangleright to move to the next column.	6 6.5
You can use columns from L1 to L6 to enter the lists.	L1(1)=0
Press 2nd STAT PLOT and eto select Plot1. Select On, choose the scatter diagram option, XList as L1 and Ylist as L2. You can choose one of the three types of mark.	All a Const Plot1Off Plot2Off Plot2Off Plot3Off Plot3Off Plot3Off AupplotsOff Apple: Const Plot2 Plot3 Plot2 Plot3 Plot3 Plot4 Plot4 Plot4 Plot4 Plot4 Plot5 Plot4 Plot5
Press $200M$ 9:ZoomStat. Adjust your window settings to show your data and the <i>x</i> - and <i>y</i> -axes. You now have a scatter plot of <i>x</i> against <i>y</i> .	
Press 2nd î to return to the Home screen.	SinReg L1,L2,Y1
Press STAT CALC C.SinReg	
Press 2nd 11, 2nd æ, ALPHA F4 choose Y, and press F3	
Press F3 again.	
On screen, you will see the result of the sinusoidal regression.	SinRe9
The equation is in the form $y = a\sin(bx + c) + d$ and you will see the values of <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> displayed separately. The equation of the sinusoidal regression line is $y = 1.51\sin(2.00x - 0.80) + 7.99$	9=a*sin(bx+c)+d a=1.506000561 b=2.002900961 c=7998734807 d=7.991078656

Continued on next page

Press GRAPH to return to the Graphs page.	
Press \blacktriangleright . The regression line is now shown in Y ₁ . You can see the full equation if you scroll to the right.	303 Plot2 Plot3 \Y181.506000561⊮ \Y2= \Y3= \Y4= \Y5= \Y6= \Y7=

2 Differential calculus

Finding gradients, tangents and maximum and minimum points

2.1 Finding the gradient at a point

Example 19

Find the gradient of the cubic function $y = x^3 - 2x^2 - 6x + 5$ at the point where $x = 1.5$.		
Press y_{-} to display the Y= editor. The default graph type is Function, so the form Y= is displayed. Type $y = x^3 - 2x^2 - 6x + 5$ and press ENTER. (Note: Type $x, t, \Theta, n \land 3 >$ to enter x^3 . The > returns you to the baseline from the exponent.)	Plot1 Plot2 Plot3 $Y_1 \blacksquare X^3 - 2X^2 - 6X + 5$ $Y_2 = \blacksquare$ $Y_3 =$ $Y_4 =$ $Y_5 =$ $Y_6 =$	
Press ZOOM 6:ZStandard to use the default axes which are $-10 \le x \le 10$ and $-10 \le y \le 10$.		
Adjust the window to make the cubic curve fit the screen better.		
Press 2nd CALC 6: dy/dx . Press ENTER. Press 1 . 5 ENTER.	1:value 2:zero 3:minimum 4:maximum 5:intersect 2:Jf(x)dx	

Continued on next page

The calculator displays the gradient of the curve at the point where $x = 1.5$. The gradient is -5.25 .	In this example the value of xdy/dx is not exactly –5.25. This is due to the way the calculator finds the point gradient. You should ignore small errors like this when you write down the coordinates of a gradient at a the point.	dy/dx=~5.249999
--	--	-----------------

2.2 Drawing a tangent to a curve

Example 20

Draw a tangent to the curve $y = x^3 - 2x^2 - 6x + 5$ where $x = -0.5$.			
First draw the graph of $y = x^3 - 2x^2 - 6$	5 <i>x</i> + 5 (see Example 30).		
Press 2nd DRAW. Choose 5:Tangent. Press ENTER.		Datu POINTS STO 1:ClrDraw 2:Line(3:Horizontal 4:Vertical 5: DrawF 7↓Shade(
Press (-) 0 . 5 ENTER. The equation of the tangent is y = -3.25x + 5.75	In this example the values –3.25 and 5.75 are not shown as being exact. This is due to the way the calculator finds the values. You should ignore small errors like this when you write down the equation of a tangent.	X= 1.5 y= -3.249999X+5.7500005	

2.3 Finding maximum and minimum points

	TI-84 Plus
Press 2nd CALC 3:minimum. Press ENTER.	1:value 2:zero 9Eminimum 4:maximum 5:intersect 6:dy/dx 7:Jf(x)dx
To find the minimum point you need to give the left and right bounds of a region that includes it.	Y1=X^3-2X^2-6X+5
The calculator shows a point and asks you to set the left bound. Move the point using the (and) keys to choose a position to the left of the minimum.	Left Bound?
Press ENTER.	X=1.787234 Y=~6.403022
The calculator shows another point and asks you to set the right bound.	Y1=X^3-2X^2-6X+5
Move the point using the (and) keys so that the region between the left	+ 4
and right bounds contains the minimum.	Guess?
When the region contains the minimum press ENTER.	X=2.6648936 Y=*6.267515
Press ENTER again to supply a guess for the value of the minimum.	Minimum
The calculator displays the local minimum at the point (2.23, -7.24).	X=2.2301386 Y=17.236233
Press 2nd CALC 3:maximum ENTER. To find the local maximum point on the curve in exactly the same way. The maximum point is (-0.897, 8.05).	Maximum X=1.8968067 Y=8.0510479

2.4 Finding a numerical derivative

Using the calculator it is possible to find the numerical value of any derivative for any value of x. The calculator will not, however, differentiate a function algebraically. This is equivalent to finding the gradient at a point graphically.

Example 22

2.5 Graphing a numerical derivative

Although the calculator can only evaluate a numerical derivative at a point, it will graph the gradient function for all values of x.

Example 23

If $y = \frac{x}{x+3}$, draw the graph of $\frac{dy}{dx}$.	
Press $\gamma_{=}$ to display the Y= editor. The default graph type is Function, so the form Y= is displayed.	Plot1 Plot2 Plot3 V1= V2= V3= V4= V5= V6= V7=
Press ALPHA F2. Choose 3: nDeriv (to choose the derivative template.	$\frac{Plot1 Plot2 Plot3}{ Q =0}$ $\frac{d}{dQ} (Q) Q =0$ $\frac{\sqrt{2}}{\sqrt{3}}$ $\frac{\sqrt{2}}{\sqrt{3}}$ $\frac{\sqrt{2}}{\sqrt{3}}$ $\frac{\sqrt{2}}{\sqrt{3}}$ $\frac{\sqrt{2}}{\sqrt{3}}$
	Continued on next page

Find the values of x on the curve $y = \frac{x^3}{3} + x^2 - 5x + 1$ where the gradient is 3.	
Press Y= to display the Y= editor. The default graph type is Function, so the form Y= is displayed.	Plot1 Plot2 Plot3 $Y_1 = 1$ $Y_2 = 1$ $Y_3 = 1$ $Y_4 = 1$ $Y_5 = 1$ $Y_6 = 1$ $Y_7 = 1$
Press ALPHA F2. Choose 3: nDeriv(to choose the derivative template.	Plot1 Plot2 Plot3 $V1 \equiv \frac{d}{dii} (iii) _{\Box=iii}$ V2 = V3 = V4 = V5 =
In the template enter <i>x</i> , the function $\frac{x^3}{3} + x^2 - 5x + 1$ and the value <i>x</i> . Press ENTER.	Ploti Plot2 Plot3 $Y_1 \blacksquare \frac{d}{dX} \left(\frac{X^3}{3} + X^2 - 5X + * \right)$ $Y_2 = \blacksquare$ $Y_3 =$ $Y_4 =$ $Y_5 =$
Press Z000 6:ZStandard. The calculator displays the graph of the numerical derivative function of $y = \frac{x^3}{3} + x^2 - 5x + 1$.	
	Continued on next page

TI-84 Plus

Press Y= to display the Y= editor. Enter the function $Y_2 = 3$. Press GRAPH. The calculator now displays the curve	and the line $y = 3$.	
To find the points of intersection betwee Press 2nd CALC 5:intersect. Press ENTER.	een the curve and the line.	1:value 2:zero 3:minimum 4:maximum ∰intersect 6:dy/dx 7:∫f(x)dx
Press ENTER to select the first curve.	Y1=nDeriv((X^3)/3+X^2-5X_ First curve? X=0	
Press ENTER to select the second curve.	Y2=3 Second curve? X=0	
Select a point close to the intersection and press ENTER. Repeat for the second point of intersection	Y2=3 Guess? X=1.7021277 Y=3	
The curve has gradient 3 when $x = -4$ a		
	In this example the value of x is not exactly 2. This is due to the way the calculator finds the point. You should ignore small errors like this when you write down the coordinates of a gradient at a point.	Intersection X=1.9999999 Y=3

3 Integral calculus

The calculator can find the values of definite integrals either on a calculator page or graphically. The calculator method is quicker, but the graphical method is clearer and shows discontinuities, negative areas and other anomalies that can arise.

3.1 Finding the value of an indefinite integral

Example 25

Evaluate $\int_{2}^{8} \left(x - \frac{3}{\sqrt{x}}\right) dx.$	
Press ALPHA F2. Choose 4: fnlnt(to choose the integral template. In this example you will also use templates to enter the rational function and the square root.	1: abs(2: ∑(3: nDeriv(4: fnInt(5: 109BASE(FRAC FUNC HTRX YVAR)
Enter the upper and lower limits, the function and <i>x</i> in the template. Press ENTER.	∫ [©] CD d⊡
The value of the integral is 21.5 (to 3 sf).	∫ ⁸ ₂ (X- <u>3</u>)dX 21.51471863 ■

3.2 Finding the area under a curve

4 Vectors

Scalar product

4.1 Calculating a scalar product

Example 27

Г

There is no scalar product function on the TI-84 plus, but you can find the result by multiplying the vectors as lists and then finding the sum of the terms in the list.

Evaluate the scalar products:	
a $\begin{pmatrix} 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ b $\begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}$	
a Press 2nd LIST MATH 5:sum(.	NAMES OPS MANE 1:min(2:max(3:mean(4:median(3: sum(6:prod(74stdDev(
Enter the vectors as lists using curly brackets { }. Separate the terms of the vectors using commas. Multiply the two vector lists together.	∢m({1,3}*(-3,4)
Close the bracket and press ENTER. $\begin{pmatrix} 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 4 \end{pmatrix} = 9$	sum({1,3}*(-3,4) 9 ∎
b Press 2nd LIST MATH 5:sum(.	NAMES OPS Minut 1:min(2:max(3:mean(4:median(3: sum(6:prod(74stdDev(
	Continued on next page

	TI-84 Plus
Enter the vectors as lists using curly brackets { }. Separate the terms of the vectors using commas. Multiply the two vector lists together.	4 1,4>*{3,2,-1}⊧
Close the bracket and press ENTER. $\begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} = -3$	sum((1,-1,4)*(3) -3

4.2 Calculating the angle between two vectors

The angle θ between two vectors \vec{a} and \vec{b} , can be calculated using the formula

$$\theta = \arg \cos \left(\frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|} \right)$$

Calculate the angle between $2\vec{i} + 3\vec{j}$ and $3\vec{i} - \vec{j}$	
Press MODE. Select either RADIAN or DEGREE (according to the units you need your answer in) using the	ADRHAL SCI ENG FLOAT 0123456789 RADTAN DEGREE FUNC PAR POL SEQ CONNECTED DOT SEQUENTIAL SIMUL REAL a+bi re^0i FULL HORIZ G-T +NEXT+
Press 2nd DISTR.	cos-1(
Press ALPHA F1 and select the fraction template 1:n/d	COS ⁻¹ (10 n/d 2: Un/d 3: Fn/d4FUn/d 4: FF4FD FRAC FUNC HTRX YVAR)
	Continued on next page

Press 2nd LIST MATH 5:sum(.	NAMES OPS Minut 1:min(2:max(3:mean(4:median(4: median(6:prod(7↓stdDev(
Enter the vectors as lists using curly brackets { }. Separate the terms of the vectors using commas. Multiply the two vector lists together. To calculate the magnitudes of the vectors use the formula $ a\vec{i} + b\vec{j} = \sqrt{a^2 + b^2}$ Use the \triangleright key to exit the templates before entering the final bracket.	$\left(\frac{\sup\left(\langle 2,3\rangle \ast \langle 3,-1\rangle\right)}{\sqrt{2^2+3^2}\ast \sqrt{3^2+(-1)^2}}\right)$
Press ENTER. The angle between $2\vec{i} + 3\vec{j}$ and $3\vec{i} - \vec{j}$ is 74.7°.	$\cos^{-1}\left(\frac{\operatorname{sum}\left(\langle 2,3\rangle \ast \langle 3\rangle\right)}{\sqrt{2^{2}+3^{2}} \ast \sqrt{3^{2}+(\frac{1}{2})}}\right)$ 74.7448813

5 Statistics and probability

You can use your GDC to draw charts to represent data and to calculate basic statistics such as mean, median, etc. Before you do this you need to enter the data in a list.

Entering data

There are two ways of entering data: as a list or as a frequency table.

5.1 Entering lists of data

Enter the data in the list: 1, 1, 3, 9, 2.					
Press STAT 1: Edit and press ENTER. Type the numbers in the first column (L1). Press ENTER or after each number to move down to the next cell. L1 will be used later when you want to make a chart or to do some calculations with this data. You can use columns from L1 to L6 to enter the list.	CALC TESTS HEEdit… 2:SortA(3:SortD(4:ClrList 5:SetUPEditor	L1 1 3 9 2 L1(6)=	L2 	L3 	<u>1</u> -

5.2 Entering data from a frequency table

Example 30

Enter the data in the table	Number	1	2	3	4	5							
Enter the data in the table.	Frequency	3	4	6	5	2							
Press STAT 1:Edit and press E	NTER.		Ę	UI	Ц.	ÇF	ILC	TEST	ΓS	L1	L2	L3	2
Type the numbers in the first c	column (L1) a	nd	븮	Ë	di	r_{a}	iz –			1	3		
the frequencies in the second of	column (L2).		15	Ē	or	ΨĒ	lè –			5	6		
Press ENTER or - after each nut	mber to mov	e	Ĭ,	÷Č	Ĩr	٠Ľī	st			5	2		
down to the next cell.			5	:5	iet	,UF	Ed:	itor			A		
Press ▶ to move to the next co	olumn.									12(6) =			-
L1 and L2 will be used later	when you wa	nt											
to make a chart or to do som	e calculation	S											
with this data. You can use co	olumns from	L1											
to L6 to enter the lists.													

Drawing charts

Charts can be drawn from a list or from a frequency table.

5.3 Drawing a frequency histogram from a list

Draw a frequency histogram for this data: 1, 1, 3, 9, 2.						
Enter the data in L1 (see Example 5). Press 2nd STAT PLOT and ENTER to select Plot1. Select On, choose the histogram option and leave XList as L1 and Freq as 1.	Plot1Off L·· L1 L2 . 2:Plot2Off L·· L1 L2 . 3:Plot3Off L·· L1 L2 . 4↓PlotsOff	御郎記 Plot2 Plot3 0月 Off Type:レーレム 明示 4000 4004 レー Xlist:L1 Freq:1				
Press 2000 9:Stat. The automatic scales do not usually give the best display of the histogram. You will need to change the default values.	MEMORY 372oom Out 4:2Decimal 5:2Square 6:2Standard 7:2Tri9 8:2Integer					
Press window and choose options as shown. Xmin and Xmax should include the range of the data. Ymin and Ymax should include the maximum frequency and should go below zero. Xscl will define the width of the bars.	WINDOW Xmin=0 Xmax=11 Xscl=1 Ymin=-1 Ymax=3 Yscl=1 ↓Xres=1					
Press TRACE. Use the key to move to each of the bars and display their value and frequency. You should now see a frequency histogram for the data in the list 1, 1, 3, 9, 2.	P 1:L1					

5.4 Drawing a frequency histogram from a frequency table

Example 32

Draw a frequency histogram for this data:	Number12345Frequency34652	
Enter the data in L1 and L2 (see Example 6). Press 2nd STAT PLOT and ENTER to select Plot 1. Select On, choose the histogram option and leave XList as L1 and Freq as L2.	Plot10ff Plot20ff Plot20ff Plot20ff Plot20ff Plot30ff Plot30ff Plot30ff Plot30ff Plots0ff	MAN Plot2 Plot3 MAN Off Type: レー レー 別語 MAN MAN レー Xlist:L1 Freq:L2
Press 200M 9:Stat. The automatic scales do not usually give the best display of the histogram. You will need to change the default values.	SUDIA MEMORY 3†Zoom Out 4:ZDecimal 5:ZSquare 6:ZStandard 7:ZTri9 8:ZInteger 6: ZoomStat	
Press window and choose options as shown. Xmin and Xmax should include the range of the data. Ymin and Ymax should include the maximum frequency and should go below zero. Xscl will define the width of the bars.	WINDOW Xmin=0 Xmax=6 Xscl=1 Ymin=−1 Ymax=7 Yscl=1 ↓Xres=1	
Press TRACE. Use the \triangleright key to move to each of the bars and display their value and frequency. You should now see a frequency histogram for the data in the list 1, 1, 3, 9, 2.	P 1:L1/L2	

5.5 Drawing a box and whisker diagram from a list

Draw a box and whisker diagram for this dat 1, 1, 3, 9, 2.	a:	
Enter the data in L1 (see Example 5). Press 2nd STAT PLOT and ENTER to select Plot 1. Select On, choose the box and whisker option and leave XList as L1 and Freq as 1.	Plot1Off L L2 Plot2Off L L2 Plot2Off L L2 S:Plot3Off L L2 A↓PlotsOff	2011 Plot2 Plot3 加加 Off Type: レーレー 加加 通知 2011 ビー Xlist:L1 Free:1
		Continued on next page

Press ZOOM 9:Stat. The automatic scales do not usually give the best display of the box and whisker diagram. You will need to change the default values.	MEMORY 31Zoom Out 4:ZDecimal 5:ZSquare 6:ZStandard 7:ZTri9 8:ZInteger 8:ZInteger	
Press window and choose options as shown. Xmin and Xmax should include the range of the data. Ymin and Ymax do not affect the way in which the diagram is displayed.	WINDOW Xmin=0 Xmax=10 Xscl=1 Ymin=−1 Ymax=3 Yscl=1 ↓Xres=1	
Press TRACE. Use the key to move the cursor over the plot to see the quartiles, Q1 and Q3, the median and the maximum and minimum values.	P 1:L1	

5.6 Drawing a box and whisker diagram from a frequency table

Example 34

Draw a box and whisker diagram for this data:						
Number12345Frequency34652						
Enter the data in L1 and L2 (see Example 6). Press 2nd STAT PLOT and ENTER to select Plot 1. Select On, choose the box and whisker diagram option and leave XList as L1 and Freq as L2.	SHALL 2008 HEPlot1Off 2:Plot2Off 2:Plot2Off 2:Plot3Off 2:L1 L2 ■ 3:Plot3Off 2L1 L2 ■ 4↓PlotsOff	2000 Plot2 Plot3 第一日日 「PPE:」」と 品品 近日 Xlist:L1 Free:L2				
Press ZOOM 9:Stat. The automatic scales do not usually give the best display of the box and whisker diagram. You will need to change the default values.	MEMORY 31200m Out 4:2Decimal 5:2Square 6:2Standard 7:2Tri9 8:2Integer 8:2Integer					

Continued on next page

Calculating statistics

You can calculate statistics such as mean, median, etc. from a list, or from a frequency table.

5.7 Calculating statistics from a list

Calculate the summary statistics for this data: 1, 2	1, 3, 9, 2
Enter the data in L1 (see Example 5). Press STAT CALC 1:1-Var Stats. Type 2nd 11 and press ENTER.	EDIT Gills TESTS 1-Var Stats L1 191-Var Stats 2:2-Var Stats 3:Med-Med 4:LinRe9(ax+b) 5:QuadRe9 6:CubicRe9 74QuartRe9
The information shown will not fit on a single screen. You can scroll up and down to see it all. The statistics calculated for the data are: $\begin{array}{c} mean \overline{x} \\ sum \Sigma x \\ sum of squares \Sigma x^2 \end{array}$	1-Var Stats x=3.2 Σx=16 Σx²=96 Sx=3.346640106 σx=2.993325909 ↓n=5
sample standard deviation s_x population standard σ_x deviation n number n minimum value $MinX$ lower quartile Q_1 median Med upper quartile Q_3 maximum value $MaxX$	1-Var Stats Tn=5 minX=1 Q1=1 Med=2 Q3=6 maxX=9 ■

5.8 Calculating statistics from a frequency table

Example 36

Calculate the summary statistic	s for this data:		
Number 1 2 3 4	5		
Frequency 3 4 6 5	2		
Enter the data in L1 and L2 (see Press STAT CALC 1:1-Var St Type 2nd L1 , 2nd L2 and pr	e Example 6). ats. ress ENTER.	¶ar Stats L1,L2∎	
The information shown will no screen. You can scroll up and de The statistics calculated for the mean sum	t fit on a single own to see it all. data are: \bar{x} $\sum x$	1-Var Stats x=2.95 Σx=59 Σx²=203 Sx=1.234376041 σx=1.203120942 ↓n=20	
sum of squares sample standard deviation population standard deviation number minimum value	$\sum x$ s_x σ_x n minX	1-Var Stats Tn=20 minX=1 Q1=2 Med=3 Q3=4 maxX=5	
lower quartile median upper quartile maximum value	Q_1 Med Q_3 Max X		

5.9 Calculating the interquartile range

Number12345Frequency34652Gifference between the upper and lower quartiles $(Q_3 - Q_1)$.First calculate the summary statistics for this data (see Example 12).(Note: The values of the summary statistics are stored after One-VariableStatistics have been calculated and remain stored until the next time they are calculated.)Press VARS 5:Statistics PTS 9:Q3 ENTER - VARS 5:Statistics PTS 7:Q1 ENTER.The values of the summary statistics are stored after One-VariableStatistics have been calculated and remain stored until the next time they are calculated.)PTS 5:Statistics PTS 9:Q3 ENTER - VARS 5:Statistics PTS 7:Q1 ENTER.	Calculate in	terqu	artil	e ran	ige fo	or thi	s data:	The	interguartile range is the	
Frequency34652Iower quartiles $(Q_3 - Q_1)$.First calculate the summary statistics for this data (see Example 12).(Note: The values of the summary statistics are stored after One-Variable Statistics have been calculated and remain stored until the next time they are calculated.)Press VARS 5:Statistics PTS 9:Q3 ENTER - VARS 5:Statistics PTS 7:Q1 ENTER.	Number	1	2	3	4	5		diffe	rence between the upper and	
First calculate the summary statistics for this data (see Example 12). (Note: The values of the summary statistics are stored after One-Variable Statistics have been calculated and remain stored until the next time they are calculated.) Press VARS 5:Statistics PTS 9:Q3 ENTER - VARS 5:Statistics PTS 7:Q1 ENTER.	Frequency	3	4	6	5	2		lowe	er quartiles ($Q_3 - Q_1$).	
The calculator now displays the result:	First calcula (Note : The v Statistics has are calculate Press VARS PTS 7:Q1 The calculate	te th value ve be ed.) 5:St ENTER	e sur s of t en ca tatist:	nman the s alcula ics	ry sta umn ated P ys th	atistic nary s and n TS s	cs for this data (see Example 12). statistics are stored after One-Variable remain stored until the next time they 9:Q3 ENTER - VARS 5:Statistics ult:		Q3−Q1 ■	2

5.10 Using statistics

The calculator stores the values you calculate in One-Variable Statistics so that you can access them in other calculations. These values are stored until you do another One-Variable Statistics calculation.

Example 38

Calculat	e the	$e \overline{x} +$	σ_x f	for th	is da	ata:	
Number	•	1	2	3	4	5	
Frequer	ю	3	4	6	5	2	
First cald (Note: T Statistics are calcu Press VAP The calc $\overline{x} + \sigma_x =$	culat he v hav late late late 4.15	te the alue te be d.) 5:St or no 5 (to	e sur s of en ca catist ow d 3 sf)	nma the s alcul ics ispla	ry st umn ated 2: ys th	atistic nary x and x \overline{x} [M] he res	ple 12). Dne-Variable xt time they $ 4:\sigma x$ ENTER. $\overline{x}+\sigma x$ 4.153120942

Calculating binomial probabilities

5.11 The use of nCr

Find the value of $\binom{8}{3}$ (or $_{8}C_{3}$).	
Press 8. Press MATH 3:nCr. Press 3 ENTER.	MATH NUM CPX 1335 1:rand 2:nPr 90 nCr 4:! 5:randInt(6:randNorm(7↓randBin(
Press ENTER.	8 nCr 3 56

Example 40

5.12 Calculating binomial probabilities

X is a discrete random variable and $X \sim Bin(9, Calculate P(X = 5))$ $P(X = 5) = \begin{pmatrix} 9 \\ 5 \end{pmatrix} 0.75^5 0.25^4$ The calculator can find this value directly.	0.75).	
Press 2nd DISTR A:binompdf(. Enter 9 as trials, 0.75 as p and 5 as x . Select Paste and press ENTER Press ENTER again	You should enter the values: n (numtrials), <i>p</i> and <i>x</i> , in order.	DEMS DRAW 01Fcdf(Hbinomedf(B:binomcdf(C:poissonedf(D:poissonedf(E:geometedf(F:geometedf(
The calculator shows that $P(X = 5) = 0.117$ (to	o 3 sf).	binom⊵df(9,0.75⊧ .1167984009

Example 42

X is a discrete random variable and $X \sim Bin(7, Calculate the probabilities that X takes the value of the takes the takes the value of takes the takes the takes takes the value of takes takes the takes $		
Press 2nd DISTR A:binompdf(. Enter 7 as trials, 0.3 as p and leave x blank. Select Paste and press ENTER Press ENTER again	You should enter the values: n (numtrials), <i>p</i> and <i>x</i> , in order.	DCMS DRAW 0fFcdf(Hbinomedf(B:binomcdf(C:poissonedf(D:poissonedf(E:9eometedf(F:9eometedf(
The calculator displays each of the probabilitie To see the remaining values scroll the screen to The list can also be transferred as a list.	binom⊵df(7,0.3) (.0823543 .2470⊮	
Press STOP 2nd L1. Press ENTER.		binomPdf(7,0.3) (.0823543 .2470⊮ Ans→L1 (.0823543 .2470⊮
Press STAT 1:Edit The binomial probabilities are now displayed in	n the first column.	L1 L2 L3 1 00:1985 .24706 .31765 .22689 .09724 .025 .00357 L1(1) = .0823543

 X is a discrete random variable and X ~ Bin(20, 0.45). Calculate a the probability that X is less than or equal to 10. b the probability that X lies between 5 and 15 inclusive. c the probability that X is greater than 11. 					
Press 2nd DISTR B:binomcdf(. You are given the lower bound probability so you have to calculate other probabilities using this.	You should enter the values: n (numtrials), <i>p</i> and <i>x</i> , in order.	OUSUS DRAW ØfFcdf(A:binomedf(3H binomedf(C:poissonedf(D:poissonedf(E:geometedf(F:geometedf(

|--|

a Enter 30 as trials, 0.45 as p and 10 as x. Select Paste and press ENTER Press ENTER again $P(X \le 10) = 0.751$ (to 3 sf).	binomcdf(20,0.4» .75071064 ∎
b $P(5 \le X \le 15) = P(X \le 15) - P(X \le 4)$ Press 2nd DISTR B:binomcdf(Enter 20 as trials, 0.45 as <i>p</i> and 10 as <i>x</i> . Select Paste and press ENTER Type (-) and then Press 2nd DISTR B:binomcdf(Enter 20 as trials, 0.45 as <i>p</i> and 4 as <i>x</i> . Select Paste and press ENTER Press ENTER again $P(5 \le X \le 15) = 0.980$ (to 3 sf).	binomcdf(20,0.4» .9796059841 ■
c $P(X > 11) = 1 - P(X \le 11)$ Enter 1 - and then Press 2nd DISTR B:binomcdf(Select Paste and press ENTER Press ENTER again P(X > 11) = 0.131 (to 3 sf).	1-binomcdf(20,0⊧ .130764971 ∎

Calculating normal probabilities

5.13 Calculating normal probabilities from X-values

A random variable X is normally distr of 20 or $X \sim N(195, 20^2)$. Calculate a the probability that X is less than 19 b the probability that X is greater that c the probability that X lies between T	ibuted with a mean of 195 and a stand 90. n 194. 187 and 196.	ard deviation
Press 2nd DISTR 2:normalcdf(. Press ENTER. You should enter the values, Lower Bound, Upper Bound, μ and σ , in order.	The value E99 is the largest value that can be entered in the GDC and is used in the place of ∞ . It stands for 1×10^{99} (-E99 is the smallest value and is used in the place of $-\infty$). To enter the E, you need to press 2nd EE.	DESUS DRAW 1:normaledf(3:invNorm(4:invT(5:tedf(6:tcdf(74X2edf(
 a P(X < 190) Enter Lower Bound as -E99, Upper P(X < 190) = 0.401 (to 3 sf) 	er Bound as 190, μ to 195 and σ to 20.	normalcdf(-E99, (99,190,195,20) normalcdf(-E99,) .4012937256

	TF04 Flus
 <i>P</i>(X < 194) Enter Lower Bound as 194, Upper Bound as E99, μ as 195 and σ as 20. P(X > 194) = 0.520 (to 3 sf) 	normalcdf(194,e* 494,e99,195,20) normalcdf(194,e* .519938874
 <i>P</i>(187 < <i>X</i> < 196) Enter Lower Bound as 187, Upper Bound as 196, μ as 195 and σ as 20. <i>P</i>(187 < <i>X</i> < 196) = 0.175 (to 3 sf) 	normalcdf(187,1) 487,196,195,20) normalcdf(187,1) .1753605711

5.14 Calculating X-values from normal probabilities

In some problems you are given probabilities and have to calculate the associated values of X. To do this, use the invNorm function.

When using the Inverse Normal function, make sure you find the probability on the correct side of the normal curve. The areas are always the lower tail, that is they are always in the form P(X < x) (see Example 26).

If you are given the upper tail P(X > x), you must first subtract the probability from 1 before you can use invNorm (see example 27).

Example 45

A random variable X is normally distributed with a mean of 75 You are given a lower-tail probability and a standard deviation of 12 or $X \sim N(75, 12^2)$. so you can find P(X < x) directly. If P(X < x) = 0.4, find the value of x. Press 2nd DISTR | 3:invNorm(. **DRAW** DRAW You should enter the values: area :normalpdf((probability), μ and σ , in order. 2 normalcdf(Press ENTER. 妇 invNorm(:invl(5:tedf(tcdf(X2Pdf(Enter area (probability) as 0.4, μ as 75 and σ as 12. invNorm(0.4,75,⊧ 71.95983479 So if P(X < x) = 0.4 then x = 72.0 (to 3 sf).

Example 46

Scatter diagrams, linear regression and the correlation coefficient

5.15 Scatter diagrams

Example 47

Consider this data that is approximately connected by a linear function.

x	1.0	2.1	2.4	3.7	5.0
у	4.0	5.6	9.8	10.6	14.7

a Find the equation of the least squares regression line of *y* on *x*.

b Find Pearson's product-moment correlation coefficient.

c Use the equation to predict the value of *y* when x = 3.0.

Press STAT | 1:Edit and press ENTER

Type the values of x in the first column (L1) and the values of y in the second column (L2).

Press ENTER or rafter each number to move down to the next cell. Press > to move to the next column.

You can use columns from L1 to L6 to enter the lists.

Continued on next page

In order to see the Pearson's product-moment correlation coefficient, you need to have diagnostics on your GDC switched on. Press MODE and use to scroll down to the second screen. Set STAT DIAGNOSTICS to ON and press ENTER. Then press 2nd QUIT to return to the home screen.	TBACK † Hathisburg Classic MACHISBURG Classic MAS Unvd ADSHERS: 1110 DEC FRAC GDTD FORMAT GRAPH: 101 YES STAT DIAGNOSTICS: SET CLOCK 0544444444644666659454
	LinRe9(ax+b) ∎
Press STAT CALC 4:LinReg($ax + b$). Press 2nd L1 , 2nd L2 ,. Press ALPHA F4 and press ENTER to select Y1.	49(ax+b) L1,L2, ¥1 Y6 Y2 Y7 Y3 Y8
Press ENTER again.	YĂ Y9 Y5 Y0 (Frac Func Atrx Was
You will see the coefficients of the equation of the least squares regression line and the value <i>r</i> of the correlation coefficient. The equation is $y = 2.63x + 1.48$ (to 3 sf). The value of <i>r</i> is 0.955 (to 3 sf).	LinRe9 9=ax+b a=2.628199748 b=1.475912715 r ² =.9115303479 r=.9547409847
Press GRAPH and you will see the least squares regression line and the data points that you plotted previously.	· · · · · · · · · · · · · · · · · · ·

TI-84 Plus

